
HELIX: Automatic Parallelization
of Irregular Programs

for Chip Multiprocessing

Simone Campanoni, Timothy M. Jones, Glenn Holloway
Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks

Simone Campanoni HELIX 1/26

Summary

Motivation

A simple idea

Single loop parallelization

Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 2/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores

Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs

Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay

Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown
Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown
Simone Campanoni HELIX 3/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 4/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 4/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Inter-core communication ⇒

private cache access hit

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Inter-core communication ⇒

private cache access hit

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/26

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Inter-core communication ⇒ private cache access hit

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/26

Motivation (2)

HELIX

General purpose technique

Predictable speedup

Avoid slowdown

|threads| ≤ |loop iterations|

TLP extracted between loop
iterations
Iterations grouped on modular
value

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

General purpose technique

Predictable speedup

Avoid slowdown

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

General purpose technique

Predictable speedup

Avoid slowdown

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

General purpose technique

Predictable speedup

Avoid slowdown

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

General purpose technique

Predictable speedup

Avoid slowdown

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/26

Summary

Motivation

A simple idea

Single loop parallelization

Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 7/26

A Simple Idea

A simple program

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

A Simple Idea

Loop-carried data dependences

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

A Simple Idea

Idea: exploit independent instructions

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

A Simple Idea

Idea: exploit independent instructions and

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

A Simple Idea

Idea: exploit independent instructions and

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

A Simple Idea

Idea: exploit independent instructions and

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

HELIX

Overhead

Signalling

Notify threads

Sequential code

Code that must execute in
loop-iteration order

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Code scheduling

Execution of 6= segments in parallel

Automatic selection of loops

Approach

Select loops to parallelize

Light profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

Summary

Motivation

A simple idea

Single loop parallelization

Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 10/26

Step 1: Normalizing the Loop

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 1: Normalizing the Loop

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 1: Normalizing the Loop

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 1: Normalizing the Loop

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 2: Identifying data dependences to satisfy

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 3: Starting next iterations

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 3: Starting next iterations

The code is scheduled to minimize time spent ∈ prologue
Reason: prologue is executed in loop-iteration order

Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 4: Computing Sequential Segments

TLP among
segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) ∈ DData:

TLP among
segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) ∈ DData:

Instructions Wait(d) are inserted as late as possible

TLP among
segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) ∈ DData:

Instructions Wait(d) are inserted as late as possible

Instructions Signal(d) are inserted as early as possible

TLP among
segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) ∈ DData:

Instructions Wait(d) are inserted as late as possible

Instructions Signal(d) are inserted as early as possible

TLP among
segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) ∈ DData:

Instructions Wait(d) are inserted as late as possible

Instructions Signal(d) are inserted as early as possible

TLP among
segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) ∈ DData:

Instructions Wait(d) are inserted as late as possible

Instructions Signal(d) are inserted as early as possible

TLP among
segments

Simone Campanoni HELIX 12/26

Step 5: Minimizing Sequential Segments

Method inlining and code scheduling applied

TLP among
segments

Simone Campanoni HELIX 12/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Theorem

Let G = (N,E) be a data dependence redundance graph and let
Nto-synch ⊆ N be the set of dependences that includes every node
without incoming edges and one node per cycle of G.
Synchronizing the set Nto-synch synchronizes the entire set of
dependences N.

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

intra- and inter-data dependences

80%− 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

Cache memories are pull systems

Solution: couple helper threads for signal prefetching

Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Summary

Motivation

A simple idea

Single loop parallelization

Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 15/26

Loop Selection

HELIX approach

Each loop ∈ program is analyzed independently

The program is analyzed to identify the most profitable loops

Simone Campanoni HELIX 16/26

Loop Selection

HELIX approach

Each loop ∈ program is analyzed independently

The program is analyzed to identify the most profitable loops

Simone Campanoni HELIX 16/26

Loop Selection

HELIX approach

Each loop ∈ program is analyzed independently

The program is analyzed to identify the most profitable loops

Simone Campanoni HELIX 16/26

Single Loop Analysis

Assumption

Time spent to send a signal is

always ∈ critical path
constant

Speedup =
Seq + Par

Seq + Par
N + O

where

Overhead

O ≈ Sig × S +

⌈
Bytes

CPUword

⌉
×M

Thanks to characteristic of the produced code:

Sig = |loop iterations| × |sequential segments|

Simone Campanoni HELIX 17/26

Single Loop Analysis

Assumption

Time spent to send a signal is

always ∈ critical path

constant

Speedup =
Seq + Par

Seq + Par
N + O

where

Overhead

O ≈ Sig × S +

⌈
Bytes

CPUword

⌉
×M

Thanks to characteristic of the produced code:

Sig = |loop iterations| × |sequential segments|

Simone Campanoni HELIX 17/26

Single Loop Analysis

Assumption

Time spent to send a signal is

always ∈ critical path
constant

Speedup =
Seq + Par

Seq + Par
N + O

where

Overhead

O ≈ Sig × S +

⌈
Bytes

CPUword

⌉
×M

Thanks to characteristic of the produced code:

Sig = |loop iterations| × |sequential segments|

Simone Campanoni HELIX 17/26

Single Loop Analysis

Assumption

Time spent to send a signal is

always ∈ critical path
constant

Speedup =
Seq + Par

Seq + Par
N + O

where

Overhead

O ≈ Sig × S +

⌈
Bytes

CPUword

⌉
×M

Thanks to characteristic of the produced code:

Sig = |loop iterations| × |sequential segments|

Simone Campanoni HELIX 17/26

Single Loop Analysis

Assumption

Time spent to send a signal is

always ∈ critical path
constant

Speedup =
Seq + Par

Seq + Par
N + O

where

Overhead

O ≈ Sig × S +

⌈
Bytes

CPUword

⌉
×M

Thanks to characteristic of the produced code:

Sig = |loop iterations| × |sequential segments|

Simone Campanoni HELIX 17/26

Single Loop Analysis

Assumption

Time spent to send a signal is

always ∈ critical path
constant

Speedup =
Seq + Par

Seq + Par
N + O

where

Overhead

O ≈ Sig × S +

⌈
Bytes

CPUword

⌉
×M

Thanks to characteristic of the produced code:

Sig = |loop iterations| × |sequential segments|

Simone Campanoni HELIX 17/26

Identify loops to parallelize

Propagate parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Propagate parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Propagate parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Exploit parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Exploit parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Exploit parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Loop Selection for 179.art

Simone Campanoni HELIX 19/26

Summary

Motivation

A simple idea

Single loop parallelization

Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 20/26

Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

C benchmarks are first translated to CIL bytecode by GCC4CLI

Evaluation

The input train is used to select loops

The input ref is used to compute the speedups

Simone Campanoni HELIX 21/26

Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

C benchmarks are first translated to CIL bytecode by GCC4CLI

Evaluation

The input train is used to select loops

The input ref is used to compute the speedups

Simone Campanoni HELIX 21/26

Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

C benchmarks are first translated to CIL bytecode by GCC4CLI

Evaluation

The input train is used to select loops

The input ref is used to compute the speedups

Simone Campanoni HELIX 21/26

Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

C benchmarks are first translated to CIL bytecode by GCC4CLI

Evaluation

The input train is used to select loops

The input ref is used to compute the speedups

Simone Campanoni HELIX 21/26

Speedup Obtained on a Real System

Overall program speedup

Most significant contributions

Notice: no slowdown

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

Most significant contributions

Notice: no slowdown

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

Most significant contributions

Notice: no slowdown

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

Most significant contributions

Notice: no slowdown

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

Most significant contributions

Notice: no slowdown

Simone Campanoni HELIX 22/26

Chosen Loops

Most of the time is spent inside parallel code

Loops ∈ single nesting level is a poor solution

Simone Campanoni HELIX 23/26

Chosen Loops

Most of the time is spent inside parallel code

Loops ∈ single nesting level is a poor solution

Simone Campanoni HELIX 23/26

Chosen Loops

Most of the time is spent inside parallel code

Loops ∈ single nesting level is a poor solution

Simone Campanoni HELIX 23/26

Chosen Loops

Most of the time is spent inside parallel code

Loops ∈ single nesting level is a poor solution

Simone Campanoni HELIX 23/26

Chosen Loops

Most of the time is spent inside parallel code

Loops ∈ single nesting level is a poor solution

Simone Campanoni HELIX 23/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops

Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns

Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution

HELIX is able to run both independent and most of
dependent code in parallel

Thanks to the code predictability, HELIX is able to

Successfully identify the most profitable loops
Avoid slowdowns
Reduce delay per signal

How the hardware can be designed to improve HELIX code?

What are the limits of HELIX?

Simone Campanoni HELIX 24/26

References

Websites

HELIX

http://helix.eecs.harvard.edu

ILDJIT

http://ildjit.sourceforge.net

Email

xan@eecs.harvard.edu

Simone Campanoni HELIX 25/26

Thanks for your attention!

Simone Campanoni HELIX 26/26

