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Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP
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}
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Problem: amount of synchronization required increases drastically!
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Data forwarding @ Execution of # segments in parallel
Forward data between threads ° Automatic selection of loops

Approach

@ Select loops to parallelize
o Light profile based selection
@ Parallelize one loop at a time
e Each loop uses all cores decided at compile time
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Step 5: Minimizing Sequential Segments

Method inlining and code scheduling applied
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Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

@ intra- and inter-data dependences

Let G = (N, E) be a data dependence redundance graph and let
Nto-synch © N be the set of dependences that includes every node
without incoming edges and one node per cycle of G.
Synchronizing the set Nyo synch Synchronizes the entire set of
dependences N.
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Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals
@ intra- and inter-data dependences

@ 80% — 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations
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Loop Selection

HELIX approach

@ Each loop € program is analyzed independently

@ The program is analyzed to identify the most profitable loops
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Single Loop Analysis

@ Time spent to send a signal is

e always € critical path
e constant

Seq + Par

Speedup= ——————
PP = Seg+ B2 1 0

where
Overhead

. Bytes
~ —_— M
O~ Sigx$5—+ [Cpuword—‘ X

Thanks to characteristic of the produced code:

Sig = |loop iterations| x |sequential segments|

Simone Campanoni HELIX 17/26



Identify loops to parallelize

Propagate parallel code information
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Identify loops to parallelize

Exploit parallel code information

Notice: only max parallel is propagated

Is this an heuristic?
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Loop Selection for 179.art

Nesting level

1
ymatch — — T T T T T . I3
T=
2 maxT = 121000
L6|
3

maxT = 120000

T=70000 L8
maxT = 70000

maxT = 50000

Simone Campanoni

’Ecan_recognize| ™ Tmain T
| Y | | A |
I[T=21000 LI I|T=s00 L2
maxT = 123000 | | | | maxT = 2000
—gar—a—a—a |
I I{t=1000 L4 [T=1000 L9,
| 1| maxT = 1000 | [maxT = 1000]

B -
maxT = 1000

|
l:l Search in a deeper level
:I:I Selected loops
|_ Loops not reached

HELIX




Motivation

A simple idea

Single loop parallelization
Loop selection

Evaluation

Conclusion
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Evaluation

o Intel® Core™ {7-980X with six cores

e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

e The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache
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Evaluation

o Intel® Core™ i7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

e The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000

@ HELIX has been implemented € static compiler ILDJIT
@ C benchmarks are first translated to CIL bytecode by GCCACLI

Evaluation

@ The input train is used to select loops

@ The input ref is used to compute the speedups
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Speedup Obtained on a Real System

Overall program speedup
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Speedup Obtained on a Real System

Overall program speedup
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Speedup Obtained on a Real System

Overall program speedup

2Cores —— 4 Cores mummmm 6 Cores ==

1

IS

Measured speedup
(sequential execution

gzip vpr mesa art mcf equake crafty ~ammp  parser gap vortex bzip2 twolf geoMean

Most significant contributions

HELIX, neither step 6 nor step 8 ——

4 HELIX, no step 8
HELIX, no step 6 mm=m

HELIX ==

1)

Measured speedup
(sequential execution

oo o o) oo, o ol o ot o] ol 0!

gzip vpr mesa art mef equake  crafty ammp  parser gap vortex bzip2 twolf  geoMean

Notice: no slowdown
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Chosen Loops
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Chosen Loops

Most of the time is spent inside parallel code

Simone Campanoni HELIX 23/26



]
o
o
o
-
c
()
7y}
o
<
O

inside parallel code

ime is spent ins

Most of the t

Outside

e

Sequential-Control wmm

crafty

‘E

equake

F
l
i
I

Sequential-Data =

mcf

f
g

Parallel w

(00T = uonndaxa |eruanbas)
awin Jo %

parser gap vortex bzip2 twolf

ammp

vpr mesa art

gzip

%)
o

=
=)
w
I

mone Campanon




]
o
o
o
-
c
()
7y}
o
<
O

inside parallel code

ime is spent ins

Most of the t

Outside

e

Sequential-Control wmm

]

2

8 =

S ———
®

= —
e —— —

O e
El

=3

@
ne———

f
g

Parallel w

(00T = uonndaxa |eruanbas)
awin Jo %

vpr mesa art mcf equake crafty ammp  parser gap vortex bzip2 twolf

gzip

Loops € single nesting level is a poor solution

%)
o

HELIX

mone Campanon




]
o
o
o

-
c
()
7y}
o

<

O

de parallel code

ime is spent insi

Most of the t

Outside —

Sequential-Control wmm

Sequential-Data ==

Parallel

(00T = uonndaxa |eruanbas)
awin Jo %

vpr mesa art mcf equake crafty ammp  parser gap vortex bzip2 twolf

gzip

Loops € single nesting level is a poor solution

Level 6 mm

Level 5 mm

Level 4 mm

Level 3 mm

100

o o o o
© © ¥ N

s|aA3| buisau je
sdoo| ussoyd jo %

]

vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf

gzip

Clock cycles per signal

Simone Campanon



Conclusion

HELIX: a new general purpose technique to extract parallelism
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Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
@ HELIX is able to run both independent and most of
dependent code in parallel
@ Thanks to the code predictability, HELIX is able to

e Successfully identify the most profitable loops
e Avoid slowdowns
e Reduce delay per signal

@ How the hardware can be designed to improve HELIX code?
@ What are the limits of HELIX?
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Thanks for your attention!
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