HELIX: Automatic Parallelization

of Irregular Programs
for Chip Multiprocessing

Simone Campanoni, Timothy M. Jones, Glenn Holloway
Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks

HELIX

T TN

Ti
HETY o\Ime

o

% Thread
N\ synchronization
res =

BEES | HARVARD
W | School of Engineering
‘ Y |and Applied Sciences

Simone Campanoni HELIX 1/26

Motivation

A simple idea

Single loop parallelization
Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 2/26

Extraction of Thread-Level-Parallelism (TLP)

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:
1966 [—

1986 f—

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

1966 —

1986 f—

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

1966 —

Speedup increases with number of cores

1986 f—

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

1966 —

Speedup increases with number of cores
Limited applicability
@ Loop-carried dependences not handled

1986 f—

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:
o=
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:
o=
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

R el DOAL L

Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

2005 [—

Time
Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Rl DOALL
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

Gl DS\\P

v

Time

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Rl DOALL
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

Gl DS\\P

Speedup are stable on inter-core communication delay

v

Time

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

1966

1986

2005

Time

Main automatic approaches proposed:
DOALL

Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

mll DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

B DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

v

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

1966

1986

2005

Time

Main automatic approaches proposed:
DOALL

Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

mll DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

B DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

v

@ Hard to avoid slowdown

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

e DOALL
Speedup increases with number of cores

o
y

1986 I— WBIOZNGNORN

Applicable to a broader set of programs

Gl DS\\P

Speedup are stable on inter-core communication delay

Time)

Simone Campanoni HELIX 3/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Simone Campanoni HELIX 4/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 4/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 4/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 4/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP
J

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Inter-core communication =

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/26

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP
Inter-core communication = private cache access hit

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/26

Motivation (2)

HELIX

@ General purpose technique
@ Predictable speedup

e Avoid slowdown
@ |threads| < |loop iterations|

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

@ General purpose technique
@ Predictable speedup

e Avoid slowdown
@ |threads| < |loop iterations|

o TLP extracted between loop
iterations

e lIterations grouped on modular
value

Simone Campanoni

HELIX

Loop iterations
1 2 3 4 5 6 cee

Time

6/26

| Core4

Core0

[evwt][] [

Motivation (2)

HELIX

@ General purpose technique
@ Predictable speedup

o Avoid slowdown o 1 2 3 4 LsOOP itfrati.o.n.s
@ |threads| < |loop iterations|
o TLP extracted between loop [era| [t [| [t [
iterations
e lIterations grouped on modular
value Time

@ Automatic selection of loops

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

@ General purpose technique

@ Predictable speedup
e Avoid slowdown o h . ., lpopiterations
@ |threads| < |loop iterations|
° .'It'LPtc'extracted between loop [era| [t [| [t [
iterations
e lIterations grouped on modular
value Time

@ Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/26

Motivation (2)

HELIX

@ General purpose technique
@ Predictable speedup

e Avoid slowdown
@ |threads| < |loop iterations|

o TLP extracted between loop
iterations

e lIterations grouped on modular
value

@ Automatic selection of loops

@ Easy to implement

Simone Campanoni HELIX 6/26

Motivation

A simple idea

Single loop parallelization
Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 7/26

A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

}

@ A simple program

Simone Campanoni HELIX 8/26

A Simple Idea

for (...){
[1: a = update(a); |
2: workl1(a);
[3: b = update(b);]
4: work2();
}
@ Loop-carried data dependences /1

Simone Campanoni HELIX 8/26

A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

Intra iteration
data dependences
—.—.» Loop-carried

data dependences

\ —>
/

}
(1 [

Bl

@ ldea: exploit independent instructions

Simone Campanoni HELIX 8/26

A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

Intra iteration
data dependences
" _._.» Loop-carried
data dependences

@ ldea: exploit independent instructions and

Simone Campanoni HELIX 8/26

A Simple Idea

for (...){ CoreO| Core 1l
1: a = update(a); 1|,
2: workl1(a); >
3: b = update(b); : 1
4: work2(); BB
4
Intra iteration 1 | 3
i data dependences |
" _._._» Loop-carried 2 4
data dependences I
w Time l
I:l Sequential segments
I:l Parallel code

@ ldea: exploit independent instructions and

parallelism among sequential segments

Simone Campanoni HELIX 8/26

A Simple Idea

for (...){ CoreO| Core 1l
1: a = update(a); 1|,
2: workl1(a); >
3: b = update(b); : 1
4: work2(); BB
4
Intra iteration 1 | 3
i data dependences |
" _._._» Loop-carried 2 4
data dependences I
w Time l
I:l Sequential segments
I:l Parallel code

@ ldea: exploit independent instructions and
parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/26

HELIX

Overhead Optimizations

Signalling Adopted solutions
Notify threads

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

J

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

@ Code scheduling and use of SMT

Code.that.must execute in to reduce the delay per signal
loop-iteration order

J

Sequential code

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

saguenis) cock @ Code scheduling and use of SMT

Code.that.must execute in to reduce the delay per signal
loop-iteration order

J

@ Code scheduling

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

J

Sequential code

Code that must execute in

loop-iteration order - Gedo edicelfin

@ Execution of # segments in parallel

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

J

Sequential code

Code that must execute in

loop-iteration order > Qodla sy e

Data forwarding @ Execution of # segments in parallel
Forward data between threads

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions
("]

Notify threads New code analysis to reduce the

number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

Sequential code

Code that must execute in
loop-iteration order

@ Code scheduling

Data forwarding @ Execution of # segments in parallel

@ Automatic selection of loops

Forward data between threads

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

Sequential code

Code that must execute in
loop-iteration order

@ Code scheduling

Data forwarding @ Execution of # segments in parallel
Forward data between threads ° Automatic selection of loops

Approach

@ Select loops to parallelize

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

Sequential code

Code that must execute in
loop-iteration order

@ Code scheduling

Data forwarding @ Execution of # segments in parallel
Forward data between threads ° Automatic selection of loops

Approach

@ Select loops to parallelize
o Light profile based selection

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

J

Sequential code

Code that must execute in
loop-iteration order

@ Code scheduling

Data forwarding @ Execution of # segments in parallel
Forward data between threads ° Automatic selection of loops

Approach

@ Select loops to parallelize
o Light profile based selection
o Parallelize one loop at a time

Simone Campanoni HELIX 9/26

HELIX

Overhead Optimizations

Signalling Adopted solutions

Notify threads @ New code analysis to reduce the
number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

J

Sequential code

Code that must execute in
loop-iteration order

@ Code scheduling

Data forwarding @ Execution of # segments in parallel
Forward data between threads ° Automatic selection of loops

Approach

@ Select loops to parallelize
o Light profile based selection
@ Parallelize one loop at a time
e Each loop uses all cores decided at compile time

Simone Campanoni HELIX 9/26

Motivation

A simple idea

Single loop parallelization
Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 10/26

Step 1: Normalizing the Loop

Simone Campanoni HELIX 11/26

Step 1: Normalizing the Loop

Code
before loop

Prologue

BODY

|Code after loop

Simone Campanoni HELIX 11/26

Step 1: Normalizing the Loop

= 2 . r loo

” Prologue

if (@ > 5)

BODY

|Code after loop

Simone Campanoni HELIX 11/26

Step 1: Normalizing the Loop

= 2 . r loo

” Prologue

if (@ > 5)

BODY

|Code after loop

@ The code is scheduled to minimize time spent € prologue
e Reason: prologue is executed in loop-iteration order

@ Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 2: ldentifying data dependences to satisfy

” Prologue

if (@ > 5)

if (@ =0)

BODY

|Code after loop

@ The code is scheduled to minimize time spent € prologue
e Reason: prologue is executed in loop-iteration order

@ Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 3: Starting next iterations

= 2 . r loo

” Prologue

if (@ > 5)

BODY

|Code after loop

@ The code is scheduled to minimize time spent € prologue
e Reason: prologue is executed in loop-iteration order

@ Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 3: Starting next iterations

F I ()

iotart next iteration

BODY

|Code after loop

@ The code is scheduled to minimize time spent € prologue
e Reason: prologue is executed in loop-iteration order

@ Best case: single exit controlled by an induction variable

Simone Campanoni HELIX 11/26

Step 4: Computing Sequential Segments

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a,b) € Dpata:
°

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a,b) € Dpata:
e Instructions Wait(d) are inserted as late as possible

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) € Dpata:
@ Instructions Wait(d) are inserted as late as possible

@ Instructions Signal(d) are inserted as early as possible

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) € Dpata:
@ Instructions Wait(d) are inserted as late as possible

@ Instructions Signal(d) are inserted as early as possible

Loop-carried Prologue
data dependenC/
d=(a,b) H—‘ BODY

Wait(d) Wait(d) Wait(d)
Signal(d) || (a) x = ... (b)...=x
Signal(d) Signal(d)

A
Sequential
segments []
{]

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) € Dpata:
@ Instructions Wait(d) are inserted as late as possible

@ Instructions Signal(d) are inserted as early as possible

Prologue

Loop-carried Prologue
data dependenc/ vV
d=(a,b) H_‘ 50DY BODY]
M
segment 1

Wait(d) Wait(d) Wait(d) -
Signal(d) || (a) x = ... (b)...=x

Signal(d) Signal(d)
Sequential/K : :
Sequentia
segments]
{]

Simone Campanoni HELIX 12/26

Step 4: Computing Sequential Segments

For every d = (a, b) € Dpata:
@ Instructions Wait(d) are inserted as late as possible

@ Instructions Signal(d) are inserted as early as possible

Core0 Corel

|
1
. Prologue
Loop-carried Prologue | 1
data dependence A2
d=(a,b) H_‘ BODY BODY] 2 |
Py =
segment 1

Wait(d) Wait(d) Wait(d) -
Signal(d) || (a) x = ... (b)...=x
Time

Signal(d) Signal(d)
Sequential .
Sequentia
segments [-] TLP among
{]

segments

Simone Campanoni HELIX 12/26

Step 5: Minimizing Sequential Segments

Method inlining and code scheduling applied

Core0 Corel

|
. Prologue |
Loop-carried Prologue | 1
data dependence, v
d=(a.,b) H_‘ BODY BODY 2 |
Sequentia 3 | 2
segment 1 |
Wait(d) || Wait(d) Wait(d) Sequentia '
Signal(d) [[(a) x = ... (b) ... =x segment 2 |
Signal(d) Signal(d) A Time
Sequential Sequentia
segments []
ame TLP among
segments

Simone Campanoni HELIX 12/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

@ intra- and inter-data dependences

Let G = (N, E) be a data dependence redundance graph and let
Nto-synch © N be the set of dependences that includes every node
without incoming edges and one node per cycle of G.
Synchronizing the set Nyo synch Synchronizes the entire set of
dependences N.

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

@ intra- and inter-data dependences

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

@ intra- and inter-data dependences

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

@ intra- and inter-data dependences

(a,b) :(c,d)'l:

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals

@ intra- and inter-data dependences

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals
@ intra- and inter-data dependences

@ 80% — 98% of signals sent removed

Simone Campanoni HELIX 13/26

Steps 6 and 7

Step 6: Minimizing Signals

New analysis developed to minimize redundancy of signals
@ intra- and inter-data dependences

@ 80% — 98% of signals sent removed

Step 7: Inserting Inter-Thread Communication

New analysis to minimize loads and stores of shared locations

Simone Campanoni HELIX 13/26

Step 8: Coupling with Helper Threads

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1

——>» Signal

Simone Campanoni HELIX 14/26

yTime

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1

yTime —> Signal

@ Cache memories are pull systems

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1

yTime —> Signal

@ Cache memories are pull systems
@ Solution: couple helper threads for signal prefetching

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1

.. Signal transfer starts here

yTime —> Signal
@ Cache memories are pull systems

@ Solution: couple helper threads for signal prefetching

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1

Signal transfer could start here

Signal transfer starts here

"Tss3

——>» Signal

¥Time
@ Cache memories are pull systems
@ Solution: couple helper threads for signal prefetching

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1
Signal transfer could start here
Signal transfer starts here J
s
s
"Tss3
C
yTime —> Signal

@ Cache memories are pull systems
@ Solution: couple helper threads for signal prefetching

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No
prefetching
Core 0 Core 1
Signal transfer could start here
Signal transfer starts here J
s
s
"Tss3
C
yTime —> Signal

@ Cache memories are pull systems
@ Solution: couple helper threads for signal prefetching
@ Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No Prefetching
prefetching without balancing
Core 0 Core 1 Core 0 Core 1
S
S
[B |
S
SS3
S
SS3
Improvement
from signal
C prefetching
yTime —> Signal

@ Cache memories are pull systems
@ Solution: couple helper threads for signal prefetching
@ Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Step 8: Coupling with Helper Threads

No Prefetching Prefetching
prefetching without balancing with balancing
Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
A
s s
SS2
B SS1
S A
SS 3 s
¢ SS2
S B s
SS3
C
Additional improvement
S from code balancing
SS3
Improvement
from signal
C prefetching
¥Time

——>» Signal
@ Cache memories are pull systems

@ Solution: couple helper threads for signal prefetching
@ Observation: sequence of sequential segments predictable

Simone Campanoni HELIX 14/26

Motivation

A simple idea

Single loop parallelization
Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 15/26

Loop Selection

HELIX approach

Simone Campanoni HELIX 16/26

Loop Selection

HELIX approach

@ Each loop € program is analyzed independently

Simone Campanoni HELIX 16/26

Loop Selection

HELIX approach

@ Each loop € program is analyzed independently

@ The program is analyzed to identify the most profitable loops

Simone Campanoni HELIX 16/26

Single Loop Analysis

Simone Campanoni HELIX 17/26

Single Loop Analysis

@ Time spent to send a signal is
e always € critical path

Simone Campanoni HELIX 17/26

Single Loop Analysis

@ Time spent to send a signal is

e always € critical path
e constant

Simone Campanoni HELIX 17/26

Single Loop Analysis

@ Time spent to send a signal is

e always € critical path
e constant

Seq + Par

Speedup= ——————
PP = Seg+ B2 1 0

Simone Campanoni HELIX 17/26

Single Loop Analysis

@ Time spent to send a signal is

e always € critical path
e constant

Seq + Par

Speedup= ——————
PP = Seg+ B2 1 0

where
Overhead

. Bytes
~ —_— M
O~ Sigx$5—+ [Cpuword—‘ X

Simone Campanoni HELIX 17/26

Single Loop Analysis

@ Time spent to send a signal is

e always € critical path
e constant

Seq + Par

Speedup= ——————
PP = Seg+ B2 1 0

where
Overhead

. Bytes
~ —_— M
O~ Sigx$5—+ [Cpuword—‘ X

Thanks to characteristic of the produced code:

Sig = |loop iterations| x |sequential segments|

Simone Campanoni HELIX 17/26

Identify loops to parallelize

Propagate parallel code information

T=04 T=0.4
maxT = 0.4 maxT = 0.4

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Propagate parallel code information

T=04 T=04
maxT = 0.4 maxT = 0.4

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Propagate parallel code information

Notice: only max parallel is propagated

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Exploit parallel code information

A

Notice: only max parallel is propagated

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Exploit parallel code information

Notice: only max parallel is propagated

Simone Campanoni HELIX 18/26

Identify loops to parallelize

Exploit parallel code information

Notice: only max parallel is propagated

Is this an heuristic?

Simone Campanoni HELIX 18/26

Loop Selection for 179.art

Nesting level

1
ymatch — — T T T T T . I3
T=
2 maxT = 121000
L6|
3

maxT = 120000

T=70000 L8
maxT = 70000

maxT = 50000

Simone Campanoni

’Ecan_recognize| ™ Tmain T
| Y | | A |
I[T=21000 LI I|T=s00 L2
maxT = 123000 | | | | maxT = 2000
—gar—a—a—a |
I I{t=1000 L4 [T=1000 L9,
| 1| maxT = 1000 | [maxT = 1000]

B -
maxT = 1000

|
l:l Search in a deeper level
:I:I Selected loops
|_ Loops not reached

HELIX

Motivation

A simple idea

Single loop parallelization
Loop selection

Evaluation

Conclusion

Simone Campanoni HELIX 20/26

Evaluation

o Intel® Core™ {7-980X with six cores

e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

e The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Simone Campanoni HELIX 21/26

Evaluation

o Intel® Core™ i7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

e The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000

Simone Campanoni HELIX 21/26

Evaluation

o Intel® Core™ i7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

e The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000

@ HELIX has been implemented € static compiler ILDJIT
@ C benchmarks are first translated to CIL bytecode by GCCACLI

Simone Campanoni HELIX 21/26

Evaluation

o Intel® Core™ i7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

e The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000

@ HELIX has been implemented € static compiler ILDJIT
@ C benchmarks are first translated to CIL bytecode by GCCACLI

Evaluation

@ The input train is used to select loops

@ The input ref is used to compute the speedups

Simone Campanoni HELIX 21/26

Speedup Obtained on a Real System

Overall program speedup

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

2Cores —— 4 Cores mummmm 6 Cores ==

1

TR
a
35
EE
ga 3 .
3o 2
<]
52
g
8o 1
38
=g
& o

gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf geoMean

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

2Cores —— 4 Cores mummmm 6 Cores ==

1

IS

Measured speedup
(sequential execution

gzip vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf geoMean

Most significant contributions

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

2Cores —— 4 Cores mummmm 6 Cores ==

1

TR
a
35
EE
ga 3 .
3o 2
<]
52
g
8o 1
38
=g
& o

gzip vpr mesa art mcf equake crafty ~ammp parser gap vortex bzip2 twolf geoMean

Most significant contributions

HELIX, neither step 6 nor step 8 ——
4 HELIX, no step 8
HELIX, no step 6 mm=m

1)

oo o o o

gzip vpr mesa art mef equake crafty ammp parser gap vortex bzip2 twolf geoMean

Simone Campanoni HELIX 22/26

Speedup Obtained on a Real System

Overall program speedup

2Cores —— 4 Cores mummmm 6 Cores ==

1

IS

Measured speedup
(sequential execution

gzip vpr mesa art mcf equake crafty ~ammp parser gap vortex bzip2 twolf geoMean

Most significant contributions

HELIX, neither step 6 nor step 8 ——

4 HELIX, no step 8
HELIX, no step 6 mm=m

HELIX ==

1)

Measured speedup
(sequential execution

oo o o) oo, o ol o ot o] ol 0!

gzip vpr mesa art mef equake crafty ammp parser gap vortex bzip2 twolf geoMean

Notice: no slowdown

Simone Campanoni HELIX 22/26

Chosen Loops

Simone Campanoni HELIX 23/26

Chosen Loops

Most of the time is spent inside parallel code

Simone Campanoni HELIX 23/26

]
o
o
o
-
c
()
7y}
o
<
O

inside parallel code

ime is spent ins

Most of the t

Outside

e

Sequential-Control wmm

crafty

‘E

equake

F
l
i
I

Sequential-Data =

mcf

f
g

Parallel w

(00T = uonndaxa |eruanbas)
awin Jo %

parser gap vortex bzip2 twolf

ammp

vpr mesa art

gzip

%)
o

=
=)
w
I

mone Campanon

]
o
o
o
-
c
()
7y}
o
<
O

inside parallel code

ime is spent ins

Most of the t

Outside

e

Sequential-Control wmm

]

2

8 =

S ———
®

= —
e —— —

O e
El

=3

@
ne———

f
g

Parallel w

(00T = uonndaxa |eruanbas)
awin Jo %

vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf

gzip

Loops € single nesting level is a poor solution

%)
o

HELIX

mone Campanon

]
o
o
o

-
c
()
7y}
o

<

O

de parallel code

ime is spent insi

Most of the t

Outside —

Sequential-Control wmm

Sequential-Data ==

Parallel

(00T = uonndaxa |eruanbas)
awin Jo %

vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf

gzip

Loops € single nesting level is a poor solution

Level 6 mm

Level 5 mm

Level 4 mm

Level 3 mm

100

o o o o
© © ¥ N

s|aA3| buisau je
sdoo| ussoyd jo %

]

vpr mesa art mcf equake crafty ammp parser gap vortex bzip2 twolf

gzip

Clock cycles per signal

Simone Campanon

Conclusion

HELIX: a new general purpose technique to extract parallelism

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution

@ HELIX is able to run both independent and most of
dependent code in parallel

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution

@ HELIX is able to run both independent and most of
dependent code in parallel

@ Thanks to the code predictability, HELIX is able to

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
@ HELIX is able to run both independent and most of
dependent code in parallel
@ Thanks to the code predictability, HELIX is able to
e Successfully identify the most profitable loops

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
@ HELIX is able to run both independent and most of
dependent code in parallel
@ Thanks to the code predictability, HELIX is able to

e Successfully identify the most profitable loops
e Avoid slowdowns

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
@ HELIX is able to run both independent and most of
dependent code in parallel
@ Thanks to the code predictability, HELIX is able to

e Successfully identify the most profitable loops
e Avoid slowdowns
e Reduce delay per signal

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
@ HELIX is able to run both independent and most of
dependent code in parallel
@ Thanks to the code predictability, HELIX is able to

e Successfully identify the most profitable loops
e Avoid slowdowns
e Reduce delay per signal

@ How the hardware can be designed to improve HELIX code?

Simone Campanoni HELIX 24/26

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
@ HELIX is able to run both independent and most of
dependent code in parallel
@ Thanks to the code predictability, HELIX is able to

e Successfully identify the most profitable loops
e Avoid slowdowns
e Reduce delay per signal

@ How the hardware can be designed to improve HELIX code?
@ What are the limits of HELIX?

Simone Campanoni HELIX 24/26

References

e HELIX

o http://helix.eecs.harvard.edu
o ILDJIT

e http://ildjit.sourceforge.net

@ xan@eecs.harvard.edu

Simone Campanoni HELIX 25/26

Thanks for your attention!

HELIX

e

Ilrrl\/@
il

Thread
synchronization

HELIX 26/26

