HELIX-RC

An Architecture-Compiler Co-Design for
Automatic Parallelization of lrregular Programs

Simone Campanoni, Kevin Brownell, Svilen Kanev
Timothy M. Jones, Gu-Yeon Wei, David Brooks

HARVARD HE

School of Engineering
and Applied Sciences

15

Today's commodity platforms include multiple cores

Use multiple cores for a single program

Distribute loop iterations among cores

Today's commodity platforms include multiple cores

for each(...)

=
o
)
Q)
>

Mot

15

Today's commodity platforms include multiple cores

ICC, Visual studio
w/ parallelization

Program Speedup

Today's commodity platforms include multiple cores

ICC-03
ICC, Visual studio ‘

w/ parallelization -1X
State of the art [N 2>

Program Speedup

CGO 2012, HELIX: Automatic Parallelization of Irregular Programs for Chip Multiprocessing

I
o 14/(EER HCCv) [HCowvz2|
B 48—
@ 1gt Non-Numerical
& sl Programs
£
% ol
o 4
=
. L & & & g
6 £ oF o K
S A S P

IcC -03

ICC, Visual studio |
w/ parallelization 1x

State of the art _2X

Program Speedup

CGO 2012, HELIX: Automatic Parallelization of Irregular Programs for Chip Multiprocessing

; - -
o 14/(@M HOCviD) [Hoov2|. .. Numerical —
§ <) M L Programs)
@ 1gh.n Non-Numerical — :
Q. i i
@ g Programs [i
E 8 1 I
© 6 1 |
= 1 1
g 4 < :
o
o a |
0
Q& O A 2 & 8 p S B2
T T T FE T T ELS
AR S & o? & & P
S &
N

ICC, Visual studio 1
w/ parallelization -1x

State of the art _2X

Program Speedup

Today's commodity platforms include multiple cores

ICC-03
ICC, Visual studio ‘

w/ parallelization -1X
State of the art [N 2>

Program Speedup

Today's commodity platforms include multiple cores

ICC-03
ICC, Visual studio ‘

w/ parallelization -1X

state of the art | NN 2
>
HELIX-RC I 7

Program Speedup

Today's commodity platforms include multiple cores

Ring Cache
makes

automatic parallelization practical
for conventional multicores

State of the art | N 2X
veuxee I 7

Program Speedup

e Opportunity of small loops |

Core Core Core Core
@ The HELIX-RC solution

Ring Cach{>

e Evaluation of HELIX-RC

e Opportunity of small loops

Core Core Core Core
@ The HELIX-RC solution

Ring Cach{>

@ Evaluation of HELIX-RC

Opportunity

Code complexity
@ Control flow

@ Data flow

Opportunity

1 Code complexity Dependences to satisfy |
e Control flow

@ Data flow

Opportunity

1 Code complexity Dependences to satisfy 1}
e Control flow o Actual

@ Data flow o Apparent ﬂ

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow e Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)
° U Apparent

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow e Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops

)

15

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow e Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

)

15

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow e Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

)

15

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

HELIX-RC targets small (hot) loops

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

HELIX-RC targets small (hot) loops

o |} Code complexity

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

HELIX-RC targets small (hot) loops

o |} Code complexity
° U, Apparent (only 1.2x more dependences))

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

HELIX-RC targets small (hot) loops

o |} Code complexity
° U, Apparent (only 1.2x more dependences))

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

HELIX-RC targets small (hot) loops

o |} Code complexity
° U, Apparent (only 1.2x more dependences))
@ Enable code transformations to recompute shared values

Opportunity

1 Code complexity Dependences to satisfy 1}
o Control flow o Actual
@ Data flow o Apparent ﬂ

@ Thread-Level-Speculation (TLS)

° U Apparent
@ TLS overhead = big loops (10x more dependences!)

HELIX-RC targets small (hot) loops

o |} Code complexity
° U, Apparent (only 1.2x more dependences))

@ Enable code transformations to recompute shared values
° U Actual

Main Challenge for Small Loops

Very short loop iterations

Main Challenge for Small Loops

Very short loop iterations

100F

50F

Percentage of loop iterations

Clock Cycles

Main Challenge for Small Loops

Very short loop iterations

100F

50

Percentage of loop iterations

Clock Cycles

Main Challenge for Small Loops

Very short loop iterations

100F

T

;
(7]]]
= I 1
S ['
© : ! Atom
9 I | |
-]] I
= : : Measured cache :
2 Ll | ' coherence latency |
'06 % I] I
Q i Nehalem :
g : : I
3 B, :
= Bridge
e 9 :

I |} I

]] I

0 25 75 110 260
Clock Cycles

Main Challenge for Small Loops

Very short loop iterations

100F T

I
:
(7]]]
= I 1
S ['
T ! ! Atom
[= I]
9 I 1 |
-]] I
= : : Measured cache :
2 Ll | ' coherence latency |
"6 %]] I
] I
© Nehalem
& i - I
E I [} I
@ Ivy . :
e Bridge | |
(]
o - \
X '
[] op— 1 :
0o (23) 110 260

Clock Cycles

Main Challenge for Small Loops

Very short loop iterations

‘WHELIX-RC |

2) i
S ' i
© I L ! Atom
po I]
o I | 1 [
) I] I
o [: : Measured cache :
o _ ! ! coherence latency |
-.6 50 'I 1 1 I
o E Nehalem E
g I] 1 I
[} I Ivy ! |
Q A I I
5 I Bn'dge ! :
o 1 ' 1 |
I : ! ;
[] 1 1 1
0 25 75 110 260
Clock Cycles

e Opportunity of small loops |

Core Core Core Core
@ The HELIX-RC solution

Ring Cach{>

@ Evaluation of HELIX-RC

Split the Work Among Compiler and Architecture

Compiler: HCCv3

v

Architecture: Ring Cache)

Split the Work Among Compiler and Architecture

o ldentify code that may generate shared data

4)’ |l

Architecture: Ring Cache

Split the Work Among Compiler and Architecture

o ldentify code that may generate shared data

@ Expose information to architecture [\ =
.) l

Architecture: Ring Cache

Split the Work Among Compiler and Architecture

o ldentify code that may generate shared data

@ Expose information to architecture [\ W
’ Y

Architecture: Ring Cache

Drastically reduce the communication latency N

Split the Work Among Compiler and Architecture

Compiler: HCCv3

o ldentify code that may generate shared data

@ Expose information to architecture W 7

v

=
Architecture: Ring Cache) K ,

Drastically reduce the communication latency IN

Traditional
L coherence protocol
|
0 75

vy
Bridge

Split the Work Among Compiler and Architecture

Compiler: HCCv3

o ldentify code that may generate shared data

@ Expose information to architecture W 7

v

Architecture: Ring Cache) K ,

Drastically reduce the communication latency IN

@ Proactive data distribution

HELIX-RC Traditional
— coherence protocol

0 15
vy
Bridge

Split the Work Among Compiler and Architecture

Compiler: HCCv3

o ldentify code that may generate shared data

@ Expose information to architecture | l/ ;
Architecture: Ring Cache)

Drastically reduce the communication latency T

@ Proactive data distribution

HELIX-RC Traditional
— coherence proi“ocol_z,K

HELDXGRC > /X

0 15
vy
Bridge

Program Speedup

Split the Work Among Compiler and Architecture

o ldentify code that may generate shared data

@ Expose information to architecture | /i

Architecture: Ring Cache

Drastically reduce the communication latency T

@ Proactive data distribution

HELIX-RC Traditional
— coherence proi“ocol_z,K

HELDXGRC > /X

0 15
vy
Bridge

Program Speedup

Compiler HCCv3

© Parallelize most promising loops
o ldentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Compiler HCCv3

@ Parallelize most promising loops
o |dentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Compiler HCCv3

@ Parallelize most promising loops
o |dentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Compiler HCCv3

@ Parallelize most promising loops
o |dentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Compiler HCCv3

@ Parallelize most promising loops
o |dentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Compiler HCCv3

@ Parallelize most promising loops
o |dentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Compiler HCCv3

@ Parallelize most promising loops
o |dentify code that
may generate
shared loop iteration data
o Keep shared data in memory

Parallelism Among Sequential Segments

_____ » Loop-carried
data dependences

@ A small loop

6/15

Parallelism Among Sequential Segments

for (...){
1:a = f(a);
2: b = f(b);
}
1 3 2 [}

_____ » Loop-carried
data dependences

|:| Sequential segments

@ Sequential segments]

6/15

Parallelism Among Sequential Segments

for (...){
1:a = f(a);
2: b =f(b);
}
N ER

_____ » Loop-carried
data dependences

|:| Sequential segments

@ Sequential segments may generate shared data

6/15

Parallelism Among Sequential Segments

for (...){
1:a = f(a);
2: b =f(b);
}
N ER

_____ » Loop-carried
data dependences

|:| Sequential segments

@ Sequential segments may generate shared data
e Each sequential segment executes in loop-iteration order

6/15

Parallelism Among Sequential Segments

for (...){ Core0 Corel
1: a = f(a); 1 |
2: b = f(b); | -
} 2 |
Iteration 0] | 2
1) 2) 1 || iteration 1
| 2 ('l 2
_____ » Loop-carried : l
data dependences Iteration 2 | 2
|:| Sequential segments ¥ Time | Iteration 3

@ Sequential segments may generate shared data
e Each sequential segment executes in loop-iteration order

@ Parallelism among sequential segments

6/15

Small Loops Do Not Work On Commodity Multicore

for (...){ Core0 Corel
1:a = f(a); 1
2: b = f(b); 5 |

} Iteration 0|

R | Bottleneck

~.—.—» Loop-carried
data dependences

@ Data movement

-

[sequential segments Time

-
]

Iteration 1

Iteration 2

| 8

Small Loops Do Not Work On Commodity Multicore

for (...){ Core0 Corel
1:a = f(a); 1
—
}

Iteration 0|

IR Bottleneck

—.—.—» Loop-carried

data dependences o Data movement

: Sequential segments Time

Measured cache
coherence latency

| Nehalem

Percentage of loop iterations

u

0
Clock Cycles

Small Loops Do Not Work On Commodity Multicore

for (...){ Core0 Corel
1:a = f(a); 1
—
} Iteration O
[D[z] Bottleneck
T e depend e Data movement

data dependences

[: Sequential segments Time

rations

Cut communication ateﬁm:yr

s :
Y | Nehalem
& : H
g
§ Ivy '
3 ‘
e Bidoe |
) x

@ O W

Clock Cycles

Small Loops Do Not Work On Commodity Multicore

"

Cut communication

: ‘
: ‘
i X

Light Enhancement in Conventional Multicore Architecture

Light Enhancement in Conventional Multicore Architecture

DL1 DL1
[Cache] Cache

2 ry

' !

Last Level Cache

1]

e
—/

1
3

Cache

Core Core

—
C g‘-’
—

Light Enhancement in Conventional Multicore Architecture

DL1 DL1
[Cache] Cache

2 ry

' !

Last Level Cache

1]

e
—/

1
3

Cache

S\
Core Core

@‘-’
Cr—

—

(o}
X

[o9)
w

Light Enhancement in Conventional Multicore Architecture

Core Core

DL1 DL1
Cache Cache
2 ry

1]

)
r
i)
0
+

;
3
o

—

- —

75—260\

cycles

<]

pL1l
Cache

TN
N

w OXB

Core Core

I
I

Light Enhancement in Conventional Multicore Architecture

DL1 DL1
[Cache] Cache

2 ry

' !

Last Level Cache

1]

e
—/

1
3

Cache

Core Core

—
C g‘-’
—

Light Enhancement in Conventional Multicore Architecture

Ring nodes
cache shared data

o

o

S
[::;::;

o

S

0

Ring
node

Ring
node

2 .
-

[N
C——y
—

DL1
Cache (Cache]
2 ry
' !

e
—/

Last Level Cache

o
"—.

[N
g‘-’

Cache

node

=

o «—> 285

S @

o

—

3m

o |0 2

o a3

® oa
—

)

Light Enhancement in Conventional Multicore Architecture

Accelerate
communication
shaped
by the compiler

Core

nil

Ring
node

..", Ring

C——y

4 .
=
-
3
o
-3
llll
—p
—2

Cache
y

'

I
[O
? -

Last Level Cache

e
—/

o
"—.
[N

Cache

Data

<=

Signals

3=
o) 4—;8_5
[}
b DT
—

(o]
-]
2
o

—s|o 2
%S S

Light Enhancement in Conventional Multicore Architecture

Core

m afl

= (noce

'

C

O ole—n|8 Zlens| o
il
3 O 23 o
5 o
®
—ey
4—1»22
gn—-

e
—/

Last Level Cache

Data

<=

Signals

>

]
=
("

o |22
g §é
®
—
—FEob
a3 2 O e
o Q -

Core

Light Enhancement in

Ring
node

Core

ng
node

nil

\

304_.)
bS o
L ®
®

DL1
Cache

!

R

!

e

Last Level Cache

L1 Cache Reads/Writes
3 < Remote L1
& = Request/Reply

nventional Multicore Archite

o
"—.
[N

1
v
L
c

] Loads
DL1 ReadPort«—>» from Core
Cache Cache
q Cache array Stores/Signals
1 N B from Core
Data S WritePort
Ring Ring
node « node |- Rataand
) ‘| | < Signals) Data,
I Signals % Signal buffer signals
<
Signal S Signal 1 e
L Past lcredits
Future :
Core Core Link
Credits > Buffers

15

Light Enhancement in Conventional Multicore Architecture

o
o
S
[:/
o
S
0

!
[- |\
l !
DL1 DL1
Ca‘che Ca::he
' !
[Last Level Cache J
] 1
Ring 2 sw . (sz/i 5
I Signals I \;\/\,a\/lOXB 3 Sequenl’ia/
Core Core Slgnal 1 segment

Light Enhancement in Conventional Multicore Architecture

o
S
0

Ring
node

—
0

3=
Sole—>l25 > o
b 2 a3 o
5 e o
®
e
4—1’22 '
gn—-

C

R

[Last Level Cache J
! 1
Data sw OxA,5
Ring Ring ’
node | rna,s wait 1 .
I cw OXB.3 Sequential
. ! segment
core 3 '3 | signal 1 9

Light Enhancement in Conventional Multicore Architecture

o
o
S
[:/
o
S
0

!
[- |\
! !
DL1 DL1
Ca‘che Ca::he
: i
[Last Level Cache J
] 1
Data A
node) | < :«giixl'S
I sonats 1 Sequential
= sw OXB, 3 segment
core aclo:ce signal 1

Light Enhancement in Conventional Multicore Architecture

(o]
]
2
o

Core Delayed broadcast
for unknown consumers
Ring
node

—
0

3
0 o le—s|2 Z |
v O a3
SE oQ
®
—ey
IIII

o
-
[N

signal 1

IC Ca::he
' !
[Last Level Cache J
3 i
ming) | | 22 | (Ring sw OxA,5
I | o OXB.3 Sequential
S [@Xﬁ,;; > 'S segment
Core

Light Enhancement in Conventional Multicore Architecture

o

o

S
[:/

o

S

0

3=
fe) =
o o [¢—>|8 5 [«
S0 oe
|
ey
3=
—|25
o Q
—p
1

1C Ca::he
: i
[Last Level Cache J
3 1
||
fing 2 SW.OXA,S
IR walt 1. sequential
- sw 0XB,3 segment
core S 23:?'3 signal 1

Light Enhancement in Conventional Multicore Architecture

Core

nil

._.'
47—’

= (e

3»
‘—.a‘_.
o e
—

Cache Cache

2 O

=

v O
4

Last Level Cache

—

1 t
3
~a | |
i) | | g v .o
I Signals I Sequential
p sw 0XB,3 segment
core S giﬁ'3 signal 1

Light Enhancement in Conventional Multicore Architecture

|}
Last Level Cache J
v v
DL1 pL1l
he Cache
- |}
Data

sw OxA,5

wait 1 .
sw OXB,3 Sequential

=] t
Core > (9)3: ' 3 Slgna-l' 1 Segmen

) | |

Signals

Light Enhancement in Conventional Multicore Architecture

E
°
3
o
(o]
2
o
—p
0

Ring
node

3
0 o le—s|2 Z |
v O a3
SE oQ
®
—ey
.

o
-
[N

1C Ca::he
i !
.[Last Level Cache J
—
Data sw OxA,5
Ring .Rlng L
T | rna/s wait 1. gsequential
P | L | 5w oexe,3 Segment
o STgc?r?T signal 1

Light Enhancement in Conventional Multicore Architecture

!
g

il

|
33
«—25
oQ
—p
0

DL1
Cache

I
[O
? -

Last Level Cache

e
—
—/

C.

R 2 e
=
°>u

sw OxA,5
wait 1

sw 0XB, 3
signal 1

o
Q
J

Sequential
segment

(o] pa—
E

2

o

Light Enhancement in Conventional Multicore Architecture

Core

il

=
«—>»|0 =
53
1

C

Q—ibﬂ,g
gn—-

Last Level Cache

—/

Cache
Data
ode «
Signals

@
| !
a 2 e
0
0 |e—p|2 2 |es
[} a3 |
® °oQ

Core

Light Enhancement in Conventional Multicore Architecture

Core

iR |

DL1

nil

}
&

5
«—>|n
=
o

,.
m
"]
~
-
o
<
e
o
o
(2]
>
o

—/

Signals

P

(o]
o
3
o

«—>|2 2 |
a3 | >
oQ

Core

Light Enhancement in Conventional Multicore Architecture

gl

il

Core synchronization

No communication cost!

'
1

C

Q—ibﬂ,g
gn—-

(

—/

Last Level Cache

1
3

Data

(eR)ng «

Signals

)

Core

«—>|2 2 |
a3 | >
oQ

Light Enhancement in Conventional Multicore Architecture

Core

nil

Access to remote data
“Ring locally

ode

}
&

No communication cost!

C

Q—ibﬂ,g
gn—-

,.
m
"]
~
-
o
<
e
o
o
(2]
>
o

—/

@‘-’

Data 5
<=

Signals

Q%@

o_
3
sa

E._.

Architecture Parameters

(16 Intel Atom | | Simulator: XIOSim, DRAMSim
Compiler : ILDJIT (LLVM)

1.6 GHz
\

2 cycles Latency: 1 cycle

1 KB Ring l »
Node
Bandwidth: 70 bits for signals
68 bits for data

1 cycle

32 KB DL1
Cache
v

Size
[Last Level Cache 8 MBJ

[’ XI0Sim:Power-performance Modeling of Mobile x86 Cores”
ISLPED 2012, Svilen Kanev et al.]

The Importance of the Co-Design

Non-Numerical
Programs

Program speedup

@ Compiler-architecture co-design is effective for
non-numerical workloads

10/15

The Importance of the Co-Design

Non-Numerical
Programs

Program speedup

@ Compiler-architecture co-design is effective for
non-numerical workloads
@ 3 < speedup < 12

10/15

The Importance of the Co-Design

Non-Numerical
Programs

Program speedup

@ Compiler-architecture co-design is effective for
non-numerical workloads
@ 3 < speedup < 12

@ No slowdown!
10/15

The Importance of the Co-Design

16

Numerical
Programs

14

121

Non-Numerical
Programs

-
o

Program speedup
[+2] o]

@ Compiler-architecture co-design is effective for
non-numerical workloads
@ 3 < speedup < 12

@ No slowdown!
10/15

Ring Cache vs. Ring Register

11/15

—
[0}
=
-
{o10)
Q
o
oY)
=
o
w
>
()
=
O
(]
O
{e10)
=
o

11/15

/?
o - o
] - < o0 =
o9 35 | ZY ° S
] c T Sle—> 0 cjle—>| £ 5 |—>
S AIV&ID& e S Z2 [¥]
- & D—
o]
— ©]
[}
$])
g ol A
m —
(—_— o
o - e - -.c 4
o9 = Gle—p —> 3 Y 23 S
S || EBle—|O T 0 Sle» £B|le—> O
] (8] € c
(\

Ring Cache vs. Ring Register

Core Core

)
0
-]
]
[

)
(]
-]
-]
[
—

-z

Ring
node

» Ring

—)
3

>0 5 |

o

C—eep

)

H.‘_'

Iq—.

Cache Cache

DL1 DL1
Cache Cache 1C
! ! ! !
[Last Level Cache] (Last Level Cache]

v v
Cache Cache

[e]
™

3=

32
o 5 (P8 O le>

o< E
—

Data

<=

Signals

Ring
node

Core Core

)
(o]
(o] | > |
H . HE‘-_’
o g»—-

—

0
[}
=
[]

11/15

The Importance of a Cache-Based Scheme

—_
[o2]

| HELIX-RC [
1 Ring Register

=
'S

—_
n
T

—_
o
T

Program speedup
o

12 /15

Ring Cache Parameter Analysis

143 1oyde £33 25
12} |- 2 = 5o
10|31 10

e

o e g L

PO

> SRS
&S @‘*’ S

5
14| [E3 Unbounded) 1KB
- s2ke = 268

|

i

<&

il 1
a
&

& & & &
L

16 cores

S

1

KBJ [Ring
Nodej

I 1 cycle

32 KB DL1
Cache

A

v

(LastLeveICache

Size
8 MB

Latency:@
>

Bandwidth:|70 bits|for signals

16,
14
12|
10|

8

on s o

3 Unbounded
B 4 Signals

== 2
=

13 /15

Core Parameters Analysis

Program speedup

4| [E3 16cores 1 4cores
o [Bcores = 2cores
o
o
o
.
il i3
5&52 f\t-fé be»* & \°\a e”g/
A S

<

@ cores

2 cyclesi

1 KB Ring
Node

I 1 cycle

32 KB DL1
Cache

I
§ :g B 4wayOoO [2-waylO l‘
 {o/|E=3 2-way 000]
&1]
g g I
g 4l
2l]
< 0
1 - - s . —
‘%i"’o o, s bt °o "o]
< & & S g Py
& o o & i &
A o 3 A
K I @Q o K3 & (}o“

Latency: 1 cycle

—

Bandwidth: 70 bits for signals

}

(LastLeveICache

Size

8 MB]

14 /15

Conclusion

Ring Cache
makes

automatic parallelization practical
for conventional multicores

15/15

Conclusion

@ Small loops = few frequent dependences

e Cut communication latency
e Proactive data forwarding = ~0 communication latency

15/15

Conclusion

@ Small loops = few frequent dependences

e Cut communication latency
e Proactive data forwarding = ~0 communication latency

Questions?

http://helix.eecs.harvard.edu

15/15

15/15

Conclusion

oLl -
W 2X

15/15

Conclusion

Hardware support

=aty, /r/%\/ 2 X HELIX-RC 7x
ﬁ

15/15

Conclusion

Hardware support

=aty, /r/%\/ 2 X HELIX-RC 7x
ﬁ

We will release binaries for both

http://helix.eecs.harvard.edu

15/15

	Opportunity
	Observation
	Challenges

	The HELIX-RC Solution
	Approach
	Compiler
	Architecture

	Evaluation

