
HELIX-RC
An Architecture-Compiler Co-Design for

Automatic Parallelization of Irregular Programs

Simone Campanoni, Kevin Brownell, Svilen Kanev
Timothy M. Jones, Gu-Yeon Wei, David Brooks

0 / 15



Motivation

Today’s commodity platforms include multiple cores

Use multiple cores for a single program

Distribute loop iterations among cores

A 1 / 15



Motivation

Today’s commodity platforms include multiple cores

A

1 / 15



Motivation

Today’s commodity platforms include multiple cores

A 1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Motivation

Today’s commodity platforms include multiple cores

A
1 / 15



Outline

Opportunity of small loops

The HELIX-RC solution

Evaluation of HELIX-RC

1 / 15



Outline

Opportunity of small loops

The HELIX-RC solution

Evaluation of HELIX-RC

1 / 15



Opportunity

⇑

Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops

(10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑

Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops

(10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑

Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops

(10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops

(10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops

(10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC targets small (hot) loops

No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC targets small (hot) loops

No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC targets small (hot) loops

No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Opportunity

⇑ Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops (10× more dependences!)

HELIX-RC targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual

2 / 15



Main Challenge for Small Loops

Very short loop iterations

3 / 15



Main Challenge for Small Loops

Very short loop iterations

3 / 15



Main Challenge for Small Loops

Very short loop iterations

3 / 15



Main Challenge for Small Loops

Very short loop iterations

3 / 15



Main Challenge for Small Loops

Very short loop iterations

3 / 15



Main Challenge for Small Loops

Very short loop iterations

3 / 15



Outline

Opportunity of small loops

The HELIX-RC solution

Evaluation of HELIX-RC

3 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution

4 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory

5 / 15



Parallelism Among Sequential Segments

A small loop

6 / 15



Parallelism Among Sequential Segments

Sequential segments

6 / 15



Parallelism Among Sequential Segments

Sequential segments may generate shared data

Each sequential segment executes in loop-iteration order

Parallelism among sequential segments

6 / 15



Parallelism Among Sequential Segments

Sequential segments may generate shared data

Each sequential segment executes in loop-iteration order

Parallelism among sequential segments

6 / 15



Parallelism Among Sequential Segments

Sequential segments may generate shared data

Each sequential segment executes in loop-iteration order

Parallelism among sequential segments

6 / 15



Small Loops Do Not Work On Commodity Multicore

Bottleneck

Data movement

7 / 15



Small Loops Do Not Work On Commodity Multicore

Bottleneck

Data movement

7 / 15



Small Loops Do Not Work On Commodity Multicore

Bottleneck

Data movement

Cut communication latency!

7 / 15



Small Loops Do Not Work On Commodity Multicore

Bottleneck

Data movement

Cut communication latency!

7 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Light Enhancement in Conventional Multicore Architecture

8 / 15



Architecture Parameters

[”XIOSim:Power-performance Modeling of Mobile x86 Cores”
ISLPED 2012, Svilen Kanev et al.]

9 / 15



The Importance of the Co-Design

Compiler-architecture co-design is effective for
non-numerical workloads

3 < speedup < 12
No slowdown!

10 / 15



The Importance of the Co-Design

Compiler-architecture co-design is effective for
non-numerical workloads
3 < speedup < 12

No slowdown!

10 / 15



The Importance of the Co-Design

Compiler-architecture co-design is effective for
non-numerical workloads
3 < speedup < 12
No slowdown!

10 / 15



The Importance of the Co-Design

Compiler-architecture co-design is effective for
non-numerical workloads
3 < speedup < 12
No slowdown!

10 / 15



Ring Cache vs. Ring Register

11 / 15



Ring Cache vs. Ring Register

11 / 15



Ring Cache vs. Ring Register

11 / 15



The Importance of a Cache-Based Scheme

12 / 15



Ring Cache Parameter Analysis

13 / 15



Core Parameters Analysis

14 / 15



Conclusion

15 / 15



Conclusion

HELIX-RC

Small loops ⇒ few frequent dependences

Cut communication latency
Proactive data forwarding ⇒ ∼0 communication latency

Questions?

http://helix.eecs.harvard.edu

15 / 15



Conclusion

HELIX-RC

Small loops ⇒ few frequent dependences

Cut communication latency
Proactive data forwarding ⇒ ∼0 communication latency

Questions?

http://helix.eecs.harvard.edu

15 / 15



Conclusion

We will release binaries for both

http://helix.eecs.harvard.edu

15 / 15



Conclusion

We will release binaries for both

http://helix.eecs.harvard.edu

15 / 15



Conclusion

We will release binaries for both

http://helix.eecs.harvard.edu

15 / 15



Conclusion

We will release binaries for both

http://helix.eecs.harvard.edu

15 / 15


	Opportunity
	Observation
	Challenges

	The HELIX-RC Solution
	Approach
	Compiler
	Architecture

	Evaluation

