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Light Enhancement in Conventional Multicore Architecture
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Architecture Parameters

(16 Intel Atom | | Simulator: XIOSim, DRAMSim
Compiler : ILDJIT (LLVM)
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[’ XI0Sim:Power-performance Modeling of Mobile x86 Cores”
ISLPED 2012, Svilen Kanev et al.]
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Ring Cache vs. Ring Register
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The Importance of a Cache-Based Scheme
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Ring Cache Parameter Analysis
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Core Parameters Analysis

Program speedup
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We will release binaries for both

http://helix.eecs.harvard.edu
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