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Motivation

Today’s commodity platforms include multiple cores

Use multiple cores for a single program

Distribute loop iterations among cores
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Outline

Opportunity of small loops

The HELIX-RC solution

Evaluation of HELIX-RC
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Opportunity

⇑

Code complexity

Control flow

Data flow

Dependences to satisfy ⇑
Actual

Apparent ⇑
Prior Works

Thread-Level-Speculation (TLS)

⇓ Apparent

TLS overhead ⇒ big loops

(10× more dependences!)

HELIX-RC

targets small (hot) loops No TLS

⇓ Code complexity

⇓ Apparent (only 1.2× more dependences))

Enable code transformations to recompute shared values

⇓ Actual
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Main Challenge for Small Loops

Very short loop iterations
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Split the Work Among Compiler and Architecture

Compiler: HCCv3

Identify code that may generate shared data

Expose information to architecture

Architecture: Ring Cache

Drastically reduce the communication latency

Proactive data distribution
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Compiler HCCv3

1 Parallelize most promising loops

Identify code that
may generate
shared loop iteration data
Keep shared data in memory
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Parallelism Among Sequential Segments

A small loop
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Small Loops Do Not Work On Commodity Multicore

Bottleneck

Data movement
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Light Enhancement in Conventional Multicore Architecture
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Architecture Parameters

[”XIOSim:Power-performance Modeling of Mobile x86 Cores”
ISLPED 2012, Svilen Kanev et al.]
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The Importance of the Co-Design

Compiler-architecture co-design is effective for
non-numerical workloads

3 < speedup < 12
No slowdown!
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Ring Cache vs. Ring Register
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The Importance of a Cache-Based Scheme
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Ring Cache Parameter Analysis
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Core Parameters Analysis
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Conclusion
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Conclusion

HELIX-RC

Small loops ⇒ few frequent dependences

Cut communication latency
Proactive data forwarding ⇒ ∼0 communication latency

Questions?

http://helix.eecs.harvard.edu
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