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@ Motivation
@ The HELIX Research Project
@ HELIX on commodity processors

o Adaptive HELIX
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Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era: ) performance < TLP 1

Provide more parallelism

020000)

Reduce communication overhead

Communication overhead e R
Wﬂcation overhead F %

Parallelism < communication
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Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era: ) performance < TLP 1

@ Manual approach: 1} software development time

Automatic approaches target loops

@ General rule:
more than 90% of the execution is spent in less than 10% of the code

@ 10% of the code = hot loops

@ Our analysis:
Covering > 98% of program by selecting loops properly is possible
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Speedup are stable on inter-core communication delay
Hard to predict speedup

v

@ Hard to avoid slowdown
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Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era: ) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Produce speedup predictable enough to avoid slowdown
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A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

}

@ A simple program

Simone Campanoni HELIX 8/23



A Simple Idea
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2: workl1(a);
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}
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for (...){ CoreO| Core 1l
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A Simple Idea

for (...){ CoreO| Core 1l
1: a = update(a); 1|,
2: workl1(a); >
3: b = update(b); : 1
4: work2(); BB
4
Intra iteration 1 | 3
i data dependences |
" _._._» Loop-carried 2 4
data dependences I
w Time l
I:l Sequential segments
I:l Parallel code

@ ldea: exploit independent instructions and
parallelism among sequential segments

Problem: amount of synchronization required increases drastically!
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HELX @ Target: commodity processors
HEM 5 o Intel® Core™ i7-980X
f )\)S @ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[ CGO 2012, IEEE Micro 2012 |

Hardware support

Hardware support
@ Push HELIX to the limit

@ Minor changes to
commodity processors
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Status of HELIX

@ Target: commodity processors
o Intel® Core™ 7-980X

@ Static code generation

@ Number of cores decided at compile time
o Challenge: achieve speedup
e Constrain communication overhead

[ CGO 2012, IEEE Micro 2012 ]

Adaptive HELIX

Adaptive HELIX

Adapt code at run time to:

@ Parallel behavior

@ System requirements
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HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

Data forwarding e Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

@ Automatic selection of loops

Approach

@ Select loops to parallelize

e Each loop € program is analyzed independently
e These analysis are merged to identify the most profitable loops
e Light off line profile based selection

o Parallelize one loop at a time
e Each loop uses all cores decided at compile time
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HELIX on Commodity Processors: Evaluation

° InteI® Core™ {7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

o The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache
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HELIX on Commodity Processors: Evaluation

° Intel® Core™ {7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

o The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000
@ HELIX has been implemented € static compiler ILDJIT
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Speedup Obtained on a Real System

Overall program speedup
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Speedup Obtained on a Real System

Overall program speedup
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Notice: no slowdown
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Adaptive HELIX

@ Code produced for N cores
@ The number of cores changes to M at run time

o Performance
e Multi-programs scenario

Source language
program
' Generated code

. s Light
Static compiler » runtime Thread | | Thread | .. . | Thread
)
‘ Core Core Core
Multicore with fast intercore communication
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Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

N

TO —~ T1

Core 0| [Core 1| |Core 2 Core 3

@ Few store instructions
@ Thread management
e Thread pool
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Adaptive HELIX: Performance

@ Programs have execution phases
o Different executed paths

@ The amount of parallelism of a loop changes over time
o Number of cores to target are adapted at run time

Loop-carried Prologue
data dependence / I

d=(a.b) ——] BODY

Good path ad path
Sequential

cut s = ~
™~ Wait(d) Wait(d) Wait(d)
Signal(d) || (a) x = ... (b) ... =x
Signal(d) Signal(d)
Sequential; e

segments
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Adaptive HELIX: Multi-programs

Start program 1

Program 1
r&:ﬁme Thread || Thread Thread | [ Thread Knowledge
@ How to adapt the code:
Light runtime

Core
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Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
e Slowdowns are always avoided
@ HELIX is able to run both independent and most of
dependent code in parallel
@ The HELIX code is adapted at run time

e for performance
e to handle multiple programs

Light runtime and OS extension is required ]
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Thanks for your attention!
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