The HELIX Project: Overview and Directions

Simone Campanoni, Timothy M. Jones, Glenn Holloway
Gu-Yeon Wei, David Brooks

HELIX

TSN
HErNyYyY

/\Time
HARVARD

T‘@(Thread

School of Engineering
and Applied Sciences

synchronization

Simone Campanoni HELIX 1/23

@ Motivation
@ The HELIX Research Project
@ HELIX on commodity processors

o Adaptive HELIX

Simone Campanoni HELIX 2/23

Project Goal

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

....... Z
e
LLTX
NI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Cores

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Cores

Instead of

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

....... R
e
L X
X)v)%
N
Cores
Instead of

% @ Software engineer

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

....... R
e
L X
X)v)%
N
Cores
Instead of

L\

%m‘% @ Software engineer
) ° i
=% Compilers

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

HELX
/r//'/j
AL
N
Cores
Instead of

@ Software engineer
@ Compilers

@ Computer architecture

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

HELX
/C/)
XL
N
Cores
Instead of

@ Software engineer
@ Compilers
@ Computer architecture

@ VLSI

Wi

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Cores

@ Software engineer
@ Compilers
@ Computer architecture

@ VLSI Cores

Wi

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstreamJ

Cores

&% @ Software engineer

= ° [

= Compilers

4:?@ @ Computer architecture

(?;5@ @ VLSI Cores

Simone Campanoni HELIX 3/23

Extraction of Thread-Level-Parallelism (TLP)

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

020000)

Reduce communication overhead

f Communication overhead

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

020000)

Reduce communication overhead

. . Communication overhead
Communication overhead i

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

020000)

Reduce communication overhead

Communication overhead e R
Wﬂcation overhead F %

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

Provide more parallelism

020000)

Reduce communication overhead

Communication overhead e R
Wﬂcation overhead F %

Parallelism < communication

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Automatic approaches target loops

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Automatic approaches target loops

@ General rule:
90% of the execution is spent in 10% of the code

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Automatic approaches target loops

@ General rule:
more than 90% of the execution is spent in less than 10% of the code

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Automatic approaches target loops

@ General rule:
more than 90% of the execution is spent in less than 10% of the code

@ 10% of the code = hot loops

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Automatic approaches target loops

@ General rule:
more than 90% of the execution is spent in less than 10% of the code

@ 10% of the code = hot loops

@ Our analysis:
Covering > 98% of program by selecting loops properly is possible

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:
1966 [—

1986 f—

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

1966 —

1986 f—

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

1966 —

Speedup increases with number of cores

1986 f—

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

1966 —

Speedup increases with number of cores
Limited applicability
@ Loop-carried dependences not handled

1986 f—

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:
o=
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:
o=
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

R el DOAL L

Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

2005 [—

Time
Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Rl DOALL
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

Gl DS\\P

v

Time

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Rl DOALL
Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

1986 I— WBIOZNGNORN

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

Gl DS\\P

Speedup are stable on inter-core communication delay

v

Time

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

1966

1986

2005

Time

Main automatic approaches proposed:
DOALL

Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

mll DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

B DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

v

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

1966

1986

2005

Time

Main automatic approaches proposed:
DOALL

Speedup increases with number of cores
Limited applicability

@ Loop-carried dependences not handled

mll DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

B DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

v

@ Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1
@ Manual approach: 1} software development time

Main automatic approaches proposed:

e DOALL
Speedup increases with number of cores

o
y

1986 I— WBIOZNGNORN

Applicable to a broader set of programs

Gl DS\\P

Speedup are stable on inter-core communication delay

Time)

Simone Campanoni HELIX 4/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Simone Campanoni HELIX 5/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/23

Extraction of Thread-Level-Parallelism (TLP)

@ In multicore era:) performance < TLP 1

@ Manual approach: 1} software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/23

Motivation (2)

HELIX

@ General purpose technique
@ Avoid slowdown (always)
@ |threads| < |loop iterations|

o TLP extracted between loop
iterations

Simone Campanoni HELIX 6/23

Motivation (2)

Loop iterations

o 1 2 B 4 5 6 ...
HELLX
@ General purpose technique
@ Avoid slowdown (always)
o |threads| < [loop iterations| .
e TLP extracted between loop
iterations
e lIterations grouped on modular
value

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

@ General purpose technique

@ Avoid slowdown (always)
|threads| < |loop iterations|
e TLP extracted between loop
iterations
e lIterations grouped on modular
value
o Cores organized as a ring

Simone Campanoni

HELIX

Loop iterations

Time

Co re0

Iterat\ons

Data
E E

6/23

Co re2

Motivation (2)

Loop iterations

o 1 2 B 4 5 6 ...
HELLX
@ General purpose technique
@ Avoid slowdown (always)
|threads| < |loop iterations| .
e TLP extracted between loop
iterations
e lIterations grouped on modular
value CoreO
o Cores organized as a ring 'terat‘ms
. . Data
@ Automatic selection of loops EUE
Corez

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

@ General purpose technique

@ Avoid slowdown (always)

|threads| < |loop iterations|
e TLP extracted between loop
iterations
e lIterations grouped on modular
value
o Cores organized as a ring

@ Automatic selection of loops

Easy to implement

Simone Campanoni

HELIX

Loop iterations
2 B 4 5 6 ...

Time

Co re0

Iterat\ons

Data
E E

6/23

Co re2

Motivation (2)

HELIX

@ General purpose technique

Avoid slowdown (always)

|threads| < |loop iterations|
@ TLP extracted between loop
iterations
o lterations grouped on modular
value
o Cores organized as a ring

@ Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

@ Motivation
@ The HELIX Research Project
@ HELIX on commodity processors

o Adaptive HELIX

Simone Campanoni HELIX 7/23

A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

}

@ A simple program

Simone Campanoni HELIX 8/23

A Simple Idea

for (...){
[1: a = update(a); |
2: workl1(a);
[3: b = update(b);]
4: work2();
}
@ Loop-carried data dependences /1

Simone Campanoni HELIX 8/23

A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

Intra iteration
data dependences
—.—.» Loop-carried

data dependences

\ —>
/

}
(1 [

Bl

@ ldea: exploit independent instructions

Simone Campanoni HELIX 8/23

A Simple Idea

for (...){
1: a = update(a);
2: workl1(a);
3: b = update(b);
4: work2();

Intra iteration
data dependences
" _._.» Loop-carried
data dependences

@ ldea: exploit independent instructions and

Simone Campanoni HELIX 8/23

A Simple Idea

for (...){ CoreO| Core 1l
1: a = update(a); 1|,
2: workl1(a); >
3: b = update(b); : 1
4: work2(); BB
4
Intra iteration 1 | 3
i data dependences |
" _._._» Loop-carried 2 4
data dependences I
w Time l
I:l Sequential segments
I:l Parallel code

@ ldea: exploit independent instructions and

parallelism among sequential segments

Simone Campanoni HELIX 8/23

A Simple Idea

for (...){ CoreO| Core 1l
1: a = update(a); 1|,
2: workl1(a); >
3: b = update(b); : 1
4: work2(); BB
4
Intra iteration 1 | 3
i data dependences |
" _._._» Loop-carried 2 4
data dependences I
w Time l
I:l Sequential segments
I:l Parallel code

@ ldea: exploit independent instructions and
parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

Status of HELIX

Simone Campanoni HELIX 9/23

Status of HELIX

@ Target: commodity processors
o Intel® Core™ 7-980X

Core'~,7

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012 |

Simone Campanoni HELIX 9/23

Status of HELIX

HELIX @ Target: commodity processors
o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012 |

—

Simone Campanoni HELIX 9/23

Status of HELIX

HELX @ Target: commodity processors

A8 o Intel® Core™ i7-980X

@ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012 |

Hardware support

Hardware support

Simone Campanoni HELIX 9/23

Status of HELIX

HELX @ Target: commodity processors
HEM 5 o Intel® Core™ i7-980X
f)\)S @ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012 |

Hardware support

Hardware support

Simone Campanoni HELIX 9/23

Status of HELIX

HELX @ Target: commodity processors
HEM 5 o Intel® Core™ i7-980X
f)\)S @ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012 |

Hardware support

Hardware support
@ Push HELIX to the limit

Simone Campanoni HELIX 9/23

Status of HELIX

HELX @ Target: commodity processors
HEM 5 o Intel® Core™ i7-980X
f)\)S @ Static code generation

@ Number of cores decided at compile time
@ Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012 |

Hardware support

Hardware support
@ Push HELIX to the limit

@ Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

@ Target: commodity processors
o Intel® Core™ 7-980X

@ Static code generation

@ Number of cores decided at compile time
o Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adaptive HELIX

Simone Campanoni HELIX 9/23

Status of HELIX

@ Target: commodity processors
o Intel® Core™ 7-980X

@ Static code generation

@ Number of cores decided at compile time
o Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adaptive HELIX

Adapt code at run time to:

Simone Campanoni HELIX 9/23

Status of HELIX

@ Target: commodity processors
o Intel® Core™ 7-980X

@ Static code generation

@ Number of cores decided at compile time
o Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adaptive HELIX

Adapt code at run time to:

@ Parallel behavior

Simone Campanoni HELIX 9/23

Status of HELIX

@ Target: commodity processors
o Intel® Core™ 7-980X

@ Static code generation

@ Number of cores decided at compile time
o Challenge: achieve speedup
e Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adaptive HELIX

Adapt code at run time to:

@ Parallel behavior

@ System requirements

Simone Campanoni HELIX 9/23

e Motivation
@ The HELIX Research Project
@ HELIX on commodity processors

o Adaptive HELIX

Simone Campanoni HELIX 10/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the
number of signals to send

@ Code scheduling and use of SMT
to reduce the delay per signal

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations
e
Notify threads @ New code analysis to reduce the
number of signals to send
@ Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations
e
Notify threads @ New code analysis to reduce the
number of signals to send
@ Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

@ Automatic selection of loops

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

Data forwarding e Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

@ Automatic selection of loops

Approach

@ Select loops to parallelize

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

Data forwarding e Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

@ Automatic selection of loops

Approach

@ Select loops to parallelize
e Each loop € program is analyzed independently
e These analysis are merged to identify the most profitable loops
e Light off line profile based selection

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

Data forwarding e Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

@ Automatic selection of loops

Approach

@ Select loops to parallelize

e Each loop € program is analyzed independently
e These analysis are merged to identify the most profitable loops
e Light off line profile based selection

o Parallelize one loop at a time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead Optimizations

Signalling Adopted solutions
Notify threads @ New code analysis to reduce the

number of signals to send

Data forwarding e Code scheduling and use of SMT
Forward data between threads to reduce the delay per signal

@ Automatic selection of loops

Approach

@ Select loops to parallelize

e Each loop € program is analyzed independently
e These analysis are merged to identify the most profitable loops
e Light off line profile based selection

o Parallelize one loop at a time
e Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors: Evaluation

° InteI® Core™ {7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

o The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Simone Campanoni HELIX 12/23

HELIX on Commodity Processors: Evaluation

° InteI® Core™ {7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

o The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000

Simone Campanoni HELIX 12/23

HELIX on Commodity Processors: Evaluation

° Intel® Core™ {7-980X with six cores
e Each operating at 3.33 GHz, with Turbo Boost disabled
@ Three cache levels

o The first two, 32KB and 256KB, are private to each core
o All cores share the last level 12MB cache

Benchmarks
C benchmarks from SPEC CPU2000
@ HELIX has been implemented € static compiler ILDJIT

Simone Campanoni HELIX 12/23

Speedup Obtained on a Real System

Overall program speedup

Simone Campanoni HELIX 13/23

Speedup Obtained on a Real System

Overall program speedup

2Cores ——1 4 Cores mummmm 6 Cores ==

1

I 4
o [
BN
EE]
ga 3 .
v% 2
3
EE
3E

o 1
L
s

& o

gzip vpr mesa art mcf equake crafty ~ammp parser gap vortex bzip2 twolf geoMean

Notice: no slowdown

Simone Campanoni HELIX 13/23

Motivation

@ The HELIX Research Project

HELIX on commodity processors

Adaptive HELIX

Simone Campanoni HELIX 14/23

Adaptive HELIX

@ Code produced for N cores

Simone Campanoni HELIX 15/23

Adaptive HELIX

@ Code produced for N cores
@ The number of cores changes to M at run time

o Performance
e Multi-programs scenario

Simone Campanoni HELIX 15/23

Adaptive HELIX

@ Code produced for N cores
@ The number of cores changes to M at run time

o Performance
e Multi-programs scenario

Source language
program
' Generated code

. s Light
Static compiler » runtime Thread | | Thread | .. . | Thread
)
‘ Core Core Core
Multicore with fast intercore communication

Simone Campanoni HELIX 15/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

—

TO (> T1 — T2 (—> T3

Core 0| [Core 1| |Core 2 Core 3

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

N

TO —~ T1

Core 0| [Core 1| |Core 2 Core 3

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

—

TO (> T1 — T2 (—> T3

Core 0| [Core 1| |Core 2 Core 3

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

——
TO (> T1 | T2 —> T3

Core 0| [Core 1| |Core 2 Core 3

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

JE——

e

TO — T1 T2 —> T3

Core 0| [Core 1| |Core 2 Core 3

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

N

TO —~ T1

Core 0| [Core 1| |Core 2 Core 3

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

N

TO —~ T1

Core 0| [Core 1| |Core 2 Core 3

@ Few store instructions

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

N

TO —~ T1

Core 0| [Core 1| |Core 2 Core 3

@ Few store instructions
@ Thread management

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

N

TO —~ T1

Core 0| [Core 1| |Core 2 Core 3

@ Few store instructions
@ Thread management
e Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Performance

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

@ Programs have execution phases

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

@ Programs have execution phases
o Different executed paths

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

@ Programs have execution phases
o Different executed paths
@ The amount of parallelism of a loop changes over time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

@ Programs have execution phases
o Different executed paths

@ The amount of parallelism of a loop changes over time
o Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

@ Programs have execution phases
o Different executed paths

@ The amount of parallelism of a loop changes over time
o Number of cores to target are adapted at run time

Loop-carried Prologue
data dependence / I

d=(a.b) ——] BODY

Good path ad path
Sequential

cut s = ~
™~ Wait(d) Wait(d) Wait(d)
Signal(d) || (a) x = ... (b) ... =x
Signal(d) Signal(d)
Sequential; e

segments

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance (2)

Start program 1

Program 1

Light

: Thread || Thread
runtime

Core

‘ Core ‘ Core ‘ Core

Multicore with fast intercore communication

@ Program 1 has been
parallelized for 2 cores

Time

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Start program 1

Program 1

Light

: Thread || Thread
runtime

‘ Core Core

‘ Core ‘ Core

Multicore with fast intercore communication

@ Program 1 has been
parallelized for 2 cores

@ The program changes
execution phase

Time

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Start program 1

Program 1

Light

: Thread || Thread
runtime

‘ Core ‘ Core ‘ Core Core
Multicore with fast intercore communication
@ Program 1 has been
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ (hangephase .
parallelized for 2 cores
Program 1
tight || A @ The program changes
runtime .
: execution phase
Change i .
Zf”?o‘iig @ Light runtime starts the
‘ ‘ ‘ ‘ interaction with OS
Core Core Core Core
Multicore with fast intercore communication

Time

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Start program 1

Program 1
ng.ht Thread || Thread
runtime
‘ Core ‘ Core ‘ Core Core
Multicore with fast intercore communication
o
_______________£harﬁepiase_
Program 1
ng.ht Thread || Thread Thread || Thread °
runtime
A
Change
numberh
ofcores 4
‘ Core ‘ Core ‘ Core ‘ Core
Multicore with fast intercore communication o
Time
Simone Campanoni HELIX

Program 1 has been
parallelized for 2 cores

The program changes
execution phase

Light runtime starts the
interaction with OS

Program 1 increases the
cores to 4

18/23

Adaptive HELIX: Performance (2)

Start program 1

Program 1 K | d
; nowleage
nght Thread || Thread g
runtime o
@ Program parallelism:
Light runtime
‘ ‘ ‘ @ Resources available:
Core Core Core Core
L — oS
Multicore with fast intercore communication
@ Program 1 has been
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ (hangephase .
parallelized for 2 cores
Program 1
rlIJ_ri19tihnt1e Thread || Thread Thread || Thread ° The program Changes

execution phase
Eﬂiﬁih - :

temmes 05 | @ Light runtime starts the
interaction with OS

‘ Core ‘ Core ‘ Core

Multicore with fast intercore communication [PrOgram 1 increases the
Time cores to 4

‘ Core

Simone Campanoni HELIX 18/23

Adaptive HELIX: Multi-programs

Start program 1

Program 1

Light

: Thread || Thread Thread | [Thread
runtime

Core

‘ Core ‘ Core ‘ Core

Multicore with fast intercore communication

@ Program 1 has been
parallelized for 4 cores

Time

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Start program 1

Program 1
ng.ht Thread || Thread Thread | [Thread
runtime

Core

‘ Core ‘ Core ‘ Core

Multicore with fast intercore communication

@ Program 1 has been
parallelized for 4 cores

@ Program 2 starts running

Time

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Start program 1

Program 1

Light

: Thread || Thread Thread | [Thread
runtime

Core

‘ Core

‘ Core ‘ Core

Multicore with fast intercore communication

Start program 2

———————————————— ~@ Program 1 has been
Program 1 .
parallelized for 4 cores

Light Thread || Thread Thread || Thread

runtime .
. @ Program 2 starts running
Change . .
Zf”ZL‘EZ'L e OS starts the interaction
with Light runtime

Core

‘ Core ‘

‘ Core ‘ Core

Multicore with fast intercore communication

Time

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Start program 1

Program 1
ng.ht Thread || Thread Thread | [Thread
runtime

Core

‘ Core ‘ Core ‘ Core

Multicore with fast intercore communication

Start program 2

——————————————————— @ Program 1 has been
Program 1 .
parallelized for 4 cores

Light

4 Thread || Thread
runtime

@ Program 2 starts running

Change . .
Zf”ZL‘EZ'L e OS starts the interaction
with Light runtime

Core

‘ Core ‘ Core ‘ Core ‘

@ Program 1 reduces the cores

Multicore with fast intercore communication

Time

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Start program 1

Program 1

Light

: Thread || Thread Thread | [Thread
runtime

Core

‘ Core ‘ Core ‘ Core

Multicore with fast intercore communication

Start program 2

——————————————————— @ Program 1 has been

Program 1 Program 2 .
i . parallelized for 4 cores
ight Thread || Thread Thread || Thread Light
runtime runtime .
(-] Program 2 starts running

Change . .
Zf”ZL‘EZ'L e OS starts the interaction
with Light runtime

Core

‘ Core ‘ Core ‘ Core ‘

@ Program 1 reduces the cores

Multicore with fast intercore communication

Time

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Start program 1

Program 1
r&:ﬁme Thread || Thread Thread | [Thread Knowledge
@ How to adapt the code:
Light runtime

Core

‘ Core ‘ Core ‘ Core

@ Running programs:

o)

Multicore with fast intercore communication

Start program 2

——————————————————— @ Program 1 has been

Program 1 Program 2 .
. . parallelized for 4 cores
Light Light
: Thread || Thread Thread || Thread :
runtime runtime

@ Program 2 starts running

Change . .
Zf”ZL‘EZ'L e OS starts the interaction
with Light runtime

Core

‘ Core ‘ Core ‘ Core ‘

Multicore with fast intercore communication o Program 1 red uces the cores

Time

Simone Campanoni HELIX 19/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware

e Hardware not designed for this type of execution
e Slowdowns are always avoided

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware

e Hardware not designed for this type of execution
e Slowdowns are always avoided

@ HELIX is able to run both independent and most of
dependent code in parallel

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

@ Significant speedups can be achieved on current hardware
e Hardware not designed for this type of execution
e Slowdowns are always avoided
@ HELIX is able to run both independent and most of
dependent code in parallel
@ The HELIX code is adapted at run time

e for performance
e to handle multiple programs

Light runtime and OS extension is required]

Simone Campanoni HELIX 20/23

Simone Campanoni HELIX 21/23

References

e HELIX
o http://helix.eecs.harvard.edu

FOLLOW US ON

[Cwittedd
o http://twitter.com/#!/Helix_project :
o ILDJIT

o http://ildjit.sourceforge.net

@ xan@eecs.harvard.edu

Simone Campanoni HELIX 22/23

Thanks for your attention!

HELIX

e s

Time

LIE Y //x

Thread
synchronization

HELIX 23/23

