
The HELIX Project: Overview and Directions

Simone Campanoni, Timothy M. Jones, Glenn Holloway
Gu-Yeon Wei, David Brooks

Simone Campanoni HELIX 1/23

Summary

Motivation

The HELIX Research Project

HELIX on commodity processors

Adaptive HELIX

Simone Campanoni HELIX 2/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Project Goal

Making the extraction of thread-level parallelism mainstream

Instead of

Software engineer

Compilers

Computer architecture

VLSI

Simone Campanoni HELIX 3/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑

Manual approach: ⇑ software development time

Provide more parallelism

Reduce communication overhead

Parallelism ⇔ communication

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Automatic approaches target loops

General rule:

more than

90% of the execution is spent in

less than

10% of the code

10% of the code = hot loops

Our analysis:
Covering ≥ 98% of program by selecting loops properly is possible

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Automatic approaches target loops

General rule:

more than

90% of the execution is spent in

less than

10% of the code

10% of the code = hot loops

Our analysis:
Covering ≥ 98% of program by selecting loops properly is possible

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Automatic approaches target loops

General rule:
more than 90% of the execution is spent in less than 10% of the code

10% of the code = hot loops

Our analysis:
Covering ≥ 98% of program by selecting loops properly is possible

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Automatic approaches target loops

General rule:
more than 90% of the execution is spent in less than 10% of the code

10% of the code = hot loops

Our analysis:
Covering ≥ 98% of program by selecting loops properly is possible

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Automatic approaches target loops

General rule:
more than 90% of the execution is spent in less than 10% of the code

10% of the code = hot loops

Our analysis:
Covering ≥ 98% of program by selecting loops properly is possible

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores

Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs

Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay

Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown

Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown
Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

DOALL

Speedup increases with number of cores
Limited applicability

Loop-carried dependences not handled

DOACROSS

Applicable to a broader set of programs
Extremely sensitive to inter-core communication

DSWP

Speedup are stable on inter-core communication delay
Hard to predict speedup

Hard to avoid slowdown
Simone Campanoni HELIX 4/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

Is there a way to achieve all of these?

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

Applicable to a broader set of programs

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce predictable speedup

Simone Campanoni HELIX 5/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

Speedup are stable on inter-core communication delay

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/23

Motivation

Extraction of Thread-Level-Parallelism (TLP)

In multicore era: ⇑ performance ⇔ TLP ⇑
Manual approach: ⇑ software development time

Main automatic approaches proposed:

HELIX

Speedup increases with number of cores

General purpose technique

DOACROSS < Stability of speedup < DSWP

Produce speedup predictable enough to avoid slowdown

Simone Campanoni HELIX 5/23

Motivation (2)

HELIX

General purpose technique

Avoid slowdown (always)

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations

Iterations grouped on modular
value
Cores organized as a ring

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

General purpose technique

Avoid slowdown (always)

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value

Cores organized as a ring

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

General purpose technique

Avoid slowdown (always)

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value
Cores organized as a ring

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

General purpose technique

Avoid slowdown (always)

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value
Cores organized as a ring

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

General purpose technique

Avoid slowdown (always)

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value
Cores organized as a ring

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

Motivation (2)

HELIX

General purpose technique

Avoid slowdown (always)

|threads| ≤ |loop iterations|
TLP extracted between loop
iterations
Iterations grouped on modular
value
Cores organized as a ring

Automatic selection of loops

Easy to implement

Simone Campanoni HELIX 6/23

Summary

Motivation

The HELIX Research Project

HELIX on commodity processors

Adaptive HELIX

Simone Campanoni HELIX 7/23

A Simple Idea

A simple program

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

A Simple Idea

Loop-carried data dependences

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

A Simple Idea

Idea: exploit independent instructions

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

A Simple Idea

Idea: exploit independent instructions and

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

A Simple Idea

Idea: exploit independent instructions and

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

A Simple Idea

Idea: exploit independent instructions and

parallelism among sequential segments

Problem: amount of synchronization required increases drastically!

Simone Campanoni HELIX 8/23

Status of HELIX

Prototype

Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup

Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adapt code at run time to:

Parallel behavior

System requirements

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adapt code at run time to:

Parallel behavior

System requirements

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adapt code at run time to:

Parallel behavior

System requirements

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Status of HELIX

Prototype
Target: commodity processors

Intel R© CoreTM i7-980X

Static code generation

Number of cores decided at compile time

Challenge: achieve speedup
Constrain communication overhead

[CGO 2012, IEEE Micro 2012]

Adaptive HELIX

Adapt code at run time to:

Parallel behavior

System requirements

Hardware support

Push HELIX to the limit

Minor changes to
commodity processors

Simone Campanoni HELIX 9/23

Summary

Motivation

The HELIX Research Project

HELIX on commodity processors

Adaptive HELIX

Simone Campanoni HELIX 10/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors

Overhead

Signalling

Notify threads

Data forwarding

Forward data between threads

Optimizations

Adopted solutions

New code analysis to reduce the
number of signals to send

Code scheduling and use of SMT
to reduce the delay per signal

Automatic selection of loops

Approach

Select loops to parallelize

Each loop ∈ program is analyzed independently
These analysis are merged to identify the most profitable loops
Light off line profile based selection

Parallelize one loop at a time

Each loop uses all cores decided at compile time

Simone Campanoni HELIX 11/23

HELIX on Commodity Processors: Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

Simone Campanoni HELIX 12/23

HELIX on Commodity Processors: Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

Simone Campanoni HELIX 12/23

HELIX on Commodity Processors: Evaluation

Platform

Intel R© CoreTM i7-980X with six cores

Each operating at 3.33 GHz, with Turbo Boost disabled

Three cache levels

The first two, 32KB and 256KB, are private to each core
All cores share the last level 12MB cache

Benchmarks

C benchmarks from SPEC CPU2000

Compiler

HELIX has been implemented ∈ static compiler ILDJIT

Simone Campanoni HELIX 12/23

Speedup Obtained on a Real System

Overall program speedup

Notice: no slowdown

Simone Campanoni HELIX 13/23

Speedup Obtained on a Real System

Overall program speedup

Notice: no slowdown

Simone Campanoni HELIX 13/23

Summary

Motivation

The HELIX Research Project

HELIX on commodity processors

Adaptive HELIX

Simone Campanoni HELIX 14/23

Adaptive HELIX

Code produced for N cores

The number of cores changes to M at run time

Performance
Multi-programs scenario

Simone Campanoni HELIX 15/23

Adaptive HELIX

Code produced for N cores

The number of cores changes to M at run time

Performance
Multi-programs scenario

Simone Campanoni HELIX 15/23

Adaptive HELIX

Code produced for N cores

The number of cores changes to M at run time

Performance
Multi-programs scenario

Simone Campanoni HELIX 15/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Cost

What is the cost of adapting the produced binary?

Few store instructions

Thread management

Thread pool

Simone Campanoni HELIX 16/23

Adaptive HELIX: Performance

Programs have execution phases

Different executed paths

The amount of parallelism of a loop changes over time

Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

Programs have execution phases

Different executed paths

The amount of parallelism of a loop changes over time

Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

Programs have execution phases

Different executed paths

The amount of parallelism of a loop changes over time

Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

Programs have execution phases

Different executed paths

The amount of parallelism of a loop changes over time

Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

Programs have execution phases

Different executed paths

The amount of parallelism of a loop changes over time

Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance

Programs have execution phases

Different executed paths

The amount of parallelism of a loop changes over time

Number of cores to target are adapted at run time

Simone Campanoni HELIX 17/23

Adaptive HELIX: Performance (2)

Knowledge

Program parallelism:
Light runtime

Resources available:
OS

Program 1 has been
parallelized for 2 cores

The program changes
execution phase

Light runtime starts the
interaction with OS

Program 1 increases the
cores to 4

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Knowledge

Program parallelism:
Light runtime

Resources available:
OS

Program 1 has been
parallelized for 2 cores

The program changes
execution phase

Light runtime starts the
interaction with OS

Program 1 increases the
cores to 4

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Knowledge

Program parallelism:
Light runtime

Resources available:
OS

Program 1 has been
parallelized for 2 cores

The program changes
execution phase

Light runtime starts the
interaction with OS

Program 1 increases the
cores to 4

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Knowledge

Program parallelism:
Light runtime

Resources available:
OS

Program 1 has been
parallelized for 2 cores

The program changes
execution phase

Light runtime starts the
interaction with OS

Program 1 increases the
cores to 4

Simone Campanoni HELIX 18/23

Adaptive HELIX: Performance (2)

Knowledge

Program parallelism:
Light runtime

Resources available:
OS

Program 1 has been
parallelized for 2 cores

The program changes
execution phase

Light runtime starts the
interaction with OS

Program 1 increases the
cores to 4

Simone Campanoni HELIX 18/23

Adaptive HELIX: Multi-programs

Knowledge

How to adapt the code:
Light runtime

Running programs:
OS

Program 1 has been
parallelized for 4 cores

Program 2 starts running

OS starts the interaction
with Light runtime

Program 1 reduces the cores

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Knowledge

How to adapt the code:
Light runtime

Running programs:
OS

Program 1 has been
parallelized for 4 cores

Program 2 starts running

OS starts the interaction
with Light runtime

Program 1 reduces the cores

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Knowledge

How to adapt the code:
Light runtime

Running programs:
OS

Program 1 has been
parallelized for 4 cores

Program 2 starts running

OS starts the interaction
with Light runtime

Program 1 reduces the cores

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Knowledge

How to adapt the code:
Light runtime

Running programs:
OS

Program 1 has been
parallelized for 4 cores

Program 2 starts running

OS starts the interaction
with Light runtime

Program 1 reduces the cores

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Knowledge

How to adapt the code:
Light runtime

Running programs:
OS

Program 1 has been
parallelized for 4 cores

Program 2 starts running

OS starts the interaction
with Light runtime

Program 1 reduces the cores

Simone Campanoni HELIX 19/23

Adaptive HELIX: Multi-programs

Knowledge

How to adapt the code:
Light runtime

Running programs:
OS

Program 1 has been
parallelized for 4 cores

Program 2 starts running

OS starts the interaction
with Light runtime

Program 1 reduces the cores

Simone Campanoni HELIX 19/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution
Slowdowns are always avoided

HELIX is able to run both independent and most of
dependent code in parallel

The HELIX code is adapted at run time

for performance
to handle multiple programs

Light runtime and OS extension is required

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution
Slowdowns are always avoided

HELIX is able to run both independent and most of
dependent code in parallel

The HELIX code is adapted at run time

for performance
to handle multiple programs

Light runtime and OS extension is required

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution
Slowdowns are always avoided

HELIX is able to run both independent and most of
dependent code in parallel

The HELIX code is adapted at run time

for performance
to handle multiple programs

Light runtime and OS extension is required

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution
Slowdowns are always avoided

HELIX is able to run both independent and most of
dependent code in parallel

The HELIX code is adapted at run time

for performance
to handle multiple programs

Light runtime and OS extension is required

Simone Campanoni HELIX 20/23

Conclusion

HELIX: a new general purpose technique to extract parallelism

Significant speedups can be achieved on current hardware

Hardware not designed for this type of execution
Slowdowns are always avoided

HELIX is able to run both independent and most of
dependent code in parallel

The HELIX code is adapted at run time

for performance
to handle multiple programs

Light runtime and OS extension is required

Simone Campanoni HELIX 20/23

Team

Simone Campanoni HELIX 21/23

References

Websites

HELIX

http://helix.eecs.harvard.edu

http://twitter.com/#!/Helix project

ILDJIT

http://ildjit.sourceforge.net

Email

xan@eecs.harvard.edu

Simone Campanoni HELIX 22/23

Thanks for your attention!

Simone Campanoni HELIX 23/23

