
Breaking Cyclic-Multithreading Parallelization with XML Parsing

Simone Campanoni Svilen Kanev Kevin Brownell Gu-Yeon Wei David Brooks
Harvard University

{xan,skanev,brownell,guyeon,dbrooks}@eecs.harvard.edu

1. Introduction

HELIX-RC, a modern re-evaluation of the cyclic-multithreading
(CMT) compiler technique [6], extracts threads from sequential
code automatically. As a CMT approach, HELIX-RC gains
performance by running iterations of the same loop on different
cores in a multicore. It successfully boosts performance for
SPEC CINT benchmarks previously considered unparallelizable
(Table 1), assuming 16 Intel Atom cores with a special-purpose
interconnect [3]. However, this paper shows there are workloads
with different characteristics, which even idealized CMT cannot
parallelize.

We identify how to overcome an inherent limitation of CMT
for these workloads. CMT techniques only run iterations of a
single loop in parallel at any given time. We propose exploiting
parallelism not only within a single loop, but also among multiple
loops. We call this execution model Multiple CMT (MCMT), and
show that it is crucial for auto-parallelizing a broader class of
workloads.

To highlight the need for MCMT, we target a workload that is
naturally hard for CMT – parsing XML-structured data. XML
parsing has been characterized as highly input-dependent, with a
complex callgraph structure [4]. The particular implementation
that we used (libxml2 [11]) adds further characteristics that
complicate blindly applying a CMT approach. First, it spends
a significant amount of execution in recursive calls or in non-
natural loops, limiting the application scope of CMT (which
exploits natural loop iterations). Second, it spends a rather small
fraction of execution in small loops (which are preferred by
HELIX-RC) – libxml2: 15%, SPEC CINT on average: 90%.

The rest of the paper starts by describing the importance of
XML parsing and the code characteristics of libxml2. Then,
after showing that HELIX-RC comes short for this library, we
demonstrate that even idealized CMT-like techniques are not
effective. On the other hand, an MCMT prototype speeds up the
parsing task by up to 3.9× on 4 cores.

Table 1: Code complexity (approximated by # lines of code)
and achieved speedup between SPEC2000 and libxml2.

Benchmark LOC HELIX-RC
Speedup [3]

Parallel loop
coverage (%)

CFP2000 177.mesa 42,491 15.1× 99%
179.art 1,036 10.5× 99%

183.equake 1,042 10.1× 99%
188.ammp 9,805 12.5× 99%

CINT2000 164.gzip 5,630 3.0× 98.2%
175.vpr 11,300 6.1× 99%
181.mcf 1,482 8.7× 99%

197.parser 7,763 7.3× 98.7%
256.bzip2 3,235 12.0× 99%
300.twolf 17,875 7.6× 99%

libxml2 170,893 1.02× 48%

xmlParseElement

xmlParseContent

xmlParseCharData xmlParseStartTag2

recursion

Figure 1: Simplified libxml2 parsing callgraph.

2. XML parsing
XML has established itself as the de facto standard for exchang-
ing semi-structured data in an interoperable and standardized
way, leading to several efforts to speed up parsing by manual
parallelization [7, 12, 13], or even by hardware acceleration [8].
Mobile browsers also spend considerable resources on the very
similar task of HTML parsing and DOM tree construction. As
an example, on the Exynos 5410 SoC, Chromium spends 17%
of its execution time and 16% of its energy on this task [15].

In order to understand why CMT performs poorly on XML
parsing, the rest of this section takes a closer look at the parser
implementation in libxml2 (Figure 1). We find code properties
that limit the amount of parallelism between iterations of the
same loop – recursion, non-natural loops and loops with a single
iteration.

Code characteristics
The parser has a very commonly executed recursive
cycle (between the functions xmlParseElement and
xmlParseContent) for inspecting XML subelements. It builds
up significant execution time without any loops whatsoever,
limiting the amount of parallelism that loop-centric CMT can
extract. Furthermore, not all hot loops are natural, and easily
identifiable by a compiler. Such non-natural loops are the result
of heavy manual optimization with goto statements (mostly in
the function xmlParseStartTag2), some of which jump in the
middle of a loop body. These jumps violate the property that a
compiler uses to to identify a loop: the header of the loop must
pre-dominate the loop body. Similarly to recursion, this renders
CMT ineffective.

The balance between the functions described above (and hence
the quality of CMT parallelization) is strongly dependent on
the shape of the input XML tree1. The more deeply nested
the tree is, the more time is spent on the recursion between
xmlParseElement and xmlParseContent, and therefore, less
time is spent in CMT-targetable code. Similarly, the more ele-
ments a tree has, the more time is spent in xmlParseStartTag2,
including in its non-natural loops. On the contrary, XML with
more leaf data causes more invocations of xmlParseCharData,
whose callees contain tens of natural loops, leading to potentially
better parallelization.

1Similar dependences have been observed for manual parallelization, leading
to a pre-parsing step to discover the XML structure [7, 13].

Program Speedup

dblp-flat

dblp

treebank

1.2x1x0x

Parallel Loop Speedup

4x3x2x1x0x

Oracle

Figure 2: Even oracle analyses cannot compensate for the
lack of loop iteration parallelism exploited by CMT.

Based on these insights, we use three inputs with different
shapes of the XML tree. The first two, treebank and dblp [9],
have trees with average nesting levels of 7.9 and 2.9. The last
one, dblp-flat, is explicitly flattened, with all elements being
direct children of the root. We expect to obtain best performance
for dblp-flat and worst for treebank.

Profiling data indicates that the code characteristics de-
scribed above significantly limit the program coverage of natural
loops. Even in the best-case input (dblp-flat, no recursion),
28% of execution time is spent in the non-natural loops of
xmlParseStartTag2, which are not considered by CMT (in
addition to 7% in initialization and de-initialization code). As
expected, recursion for deeply nested XML causes lower cover-
age – time in natural loops goes down from 65% for dblp-flat
through 60% for dblp to only 48% for treebank. Surprisingly,
most loops that cover this 48-65% only have a single iteration
each. For example, some iterate over namespaces and attributes,
which are not abundant in our inputs.

3. Limitations of CMT

HELIX-RC does not extract enough parallelism from libxml2.
We ran HELIX-RC (as fully described previously [3]) on the
libxml2 parser, assuming a four-core Atom-like platform. We
model speedup at the compiler intermediate representation (IR)
level, modelling the cost of IR instructions. Although the
speedup within parallel loops gets up to 3.5×, they only cover
between 9% and 12% of execution, resulting in low overall pro-
gram speedups (1.02×–1.08×) shown in Figure 2. The low
coverage is due to recursion, non-natural loops, and single-
iteration loops. Therefore, other CMT techniques, like HE-
LIX [1, 2], STAMPede [10], Stanford Hydra [5], DOACROSS,
and DOALL [6, 14], cannot succeed in parallelizing libxml2 as
well.

Even idealized CMT results in low performance. To estimate
the potential of ideal CMT, we measure performance gained
by HELIX-RC after replacing conservative code analyses with
oracle information. The code analyses that get replaced by
oracles are: data dependence, control dependence, induction
variable, and function pointer. Therefore, the only code in loops
that runs sequentially consists of unpredictable read-after-write
dependence chains. The oracle bars in Figure 2 show virtually
no improvement over using realistic analyses simply because of
the lack of loop iteration parallelism.

4. Beyond CMT

To overcome the inherent limitation of CMT, Multiple CMT
(MCMT) distributes iterations of multiple loops among cores.
MCMT runs multiple loops concurrently on different cores by
spreading each loop’s iterations on a different core subset. A
prototype runtime that implements MCMT achieves speedup

 treebank dblp dblp-flat
0

1

2

3

4

P
ro

g
ra

m
 s

p
e
e
d
u
p

Static DDG Dynamic DDG + Recursive Loops

Figure 3: Exploiting parallelism among multiple loops is es-
sential to gain performance.

between 3.0 and 3.9× on libxml2 parsing, assuming a four-core
platform (Figure 3, third column).

In more detail, MCMT includes a runtime which starts exe-
cuting non-loop code serially. Once it encounters a natural loop,
it dispatches its iterations among a subset of cores. Without
waiting for these iterations to complete, the runtime continues
executing subsequent code. If this code contains another loop,
its iterations are also dispatched on different cores, concurrently
with those of the first loop. For correctness, data and control
dependences are satisfied through normal synchronization. Fi-
nally, we optimistically assume zero overhead for the dispatch
decisions.

While MCMT has potential, it requires run time support for
accurate data dependence information. This is confirmed by the
large difference between the first two sets of bars in Figure 3 –
using static and dynamic data dependence graph (DDG). This is
expected because obtaining high accuracy on data dependence
analysis is a challenge on a large codebase. Moreover, because
MCMT explicitly targets multiple loops, its DDG analysis cannot
look into single loops in isolation, and must potentially address
the entirety of a large codebase. This makes static analyses
impractical for codes the size of libxml2 (Table 1). Hence the
need for a run time approach potentially based on speculative
multithreading [10].

One last optimization for MCMT allows it to capture recur-
sion better. In this more general model, iterations of different
invocations of the same loop can also run in parallel. The ef-
fect of this optimization is stronger on more recursive inputs –
Figure 3, the gap between the second and the third column.

References
[1] S. Campanoni et al., “Helix: Automatic parallelization of irregular pro-

grams for chip multiprocessing,” in CGO, 2012.
[2] S. Campanoni et al., “HELIX: Making the extraction of thread-level

parallelism mainstream,” IEEE Micro, 2012.
[3] S. Campanoni et al., “HELIX-RC: An Architecture-Compiler Co-Design

for Automatic Parallelization of Irregular Programs,” in ISCA, 2014.
[4] T. Cheung et al., “XML Document Parsing: Operational and Performance

Characteristics.” IEEE Computer, 2008.
[5] L. Hammond et al., “The Stanford Hydra CMP,” in IEEE Micro, 2000.
[6] A. R. Hurson et al., “Parallelization of DOALL and DOACROSS Loops -

A Survey,” Advances in Computers, 1997.
[7] W. Lu et al., “A parallel approach to xml parsing,” ICGC, 2006.
[8] J. V. Lunteren et al., “XML accelerator engine,” in International Workshop

on High Performance XML Processing, 2004.
[9] G. Miklau, “UW XML Repository,” 2006.

[10] J. G. Steffan et al., “The STAMPede approach to thread-level speculation,”
ACM Trans. Comput. Syst., 2005.

[11] D. Veillard, http://xmlsoft.org.
[12] C.-H. You and S.-D. Wang, “A Data Parallel Approach to XML Parsing

and Query,” High Perf. Computing and Communications, 2011.
[13] Y. Zhang et al., “Speculative p-DFAs for parallel XML parsing,” in Inter-

national Conference on High Performance Computing, 2009.
[14] H. Zhong et al., “Uncovering hidden loop level parallelism in sequential

applications,” in HPCA, 2008.
[15] Y. Zhu et al., “WebCore: Architectural Support for Mobile Web Browsing,”

in ISCA, 2014.

2

http://xmlsoft.org

	Introduction
	XML parsing
	Limitations of CMT
	Beyond CMT

